Vol. 105
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-10-19
Improvement of the Performance of Free Space Optics Channel Based on Optimized Systems Parameters
By
Progress In Electromagnetics Research M, Vol. 105, 99-108, 2021
Abstract
With the technology of free space optical communication, information can be transmitted from the transmitter to receiver wirelessly without the necessity of fiber optic cables. This technology offers system security, extended bandwidth, high data rate, and simple installation. This work aims to improve the optical channel based on the optimization of different optical amplifiers and filters. Performance analysis is carried out using a rectangular optical filter (ROF) and two electrical amplifiers named automatic gain control (AGC) and transimpedance amplifier (TIA). The results are presented in terms of maximum quality factor as a function of link range. The proposed systems (represented by ROF and AGC) brought better performance than traditional one (represented by TIA) via the same link range and data rates used. The findings displayed the progress of the AGC which has better quality factor than TIA and ROF. For instance, at 5 m length, the AGC achieves a maximum Q-factor of 12.29, while the ROF and ATI reveal a Q-factor in the range of 9.8 and 7.01 respectively.
Citation
Haider J. Abd, Sukaina Abdullah AL-Bairmani, and Mustafa Ismael, "Improvement of the Performance of Free Space Optics Channel Based on Optimized Systems Parameters," Progress In Electromagnetics Research M, Vol. 105, 99-108, 2021.
doi:10.2528/PIERM21070806
References

1. Roy, R. and J. S. Babu, "Simulation and performance analysis of free space optical systems using multiple TX/RX and polarized CO-OFDM techniques under atmospheric disturbances," Int. J. Eng. Res.: Gen. Sci., Vol. 3, No. 1, 743-749, 2015.

2. Noor, N. H. M., A. W. Naji, and W. Al Khateeb, "Performance analysis of a free space optics link with multiple transmitters/receivers," IIUM Eng. J., Vol. 13, No. 1, 49-58, 2012.

3. Abd, H. J., A. H. Jaber, and A. A. Al-Haider, "Effectiveness of modulation formats to nonlinear effects in optical fiber transmission systems under 160 Gb/s data rate," Progress In Electromagnetics Research Letters, Vol. 78, 9-16, 2018.
doi:10.2528/PIERL18050901

4. Abd, H. J., S. A. Gitaffa, and M. G. Al-Hamiri, "Impact of optimized pulse shaping on optical transmission performance in the availability of different dispersion maps," Optik - International Journal for Light and Electron Optics, Vol. 241, 167006, 2021.
doi:10.1016/j.ijleo.2021.167006

5. Liu, P., J. Wang, X. Zhou, and Y. Lu, "Design and simulation of optical wireless communication device based on SCM," International Conference on Applications and Techniques in Cyber Security and Intelligence ATCI 2018, 1074-1081, 2018.

6. Zhang, J., "Design and implementation of wireless communication system based on single chip microcomputer," Technological Development of Enterprise, Vol. 36, No. 1, 83-85, 2017.

7. Fan, X., "Design of wireless optical communication device based on MCU," Journal of Jilin Jianzhu University, Vol. 32, No. 5, 67-68, 2015.

8. Li, F., Z. Hou, and Y. Wu, "Optisystem experimental simulation of FSK optical wireless communication system," Optics & Optoelectronic Technology, Vol. 9, No. 5, 42-47, 2011.

9. Peng, L. and W. Fang, "Heterogeneity of inferring reputation of cooperative behaviors for the Prisoners' Dilemma game," Phys. A: Stat. Mech. Appl., Vol. 433, 367-378, 2015.

10. Kaur, K. and H. Singh, "Analysis of single-mode fiber link performance for attenuation in long-haul optical networks," J. Opt. Commun., Vol. 38, 27-32, 2017.

11. Ge, X., H. Cheng, M. Guizani, and T. Han, "5G wireless backhaul networks: challenges and research advances," IEEE Network 2014, Vol. 28, No. 6, 6-11, 2014.

12. Wang, C. X., et al. "Cellular architecture and key technologies for 5G wireless communication network," IEEE Commun. Mag., Vol. 52, No. 2, 122-130, 2014.
doi:10.1109/MCOM.2014.6736752

13. Bohata, J., M. Komanec, J. Spáčil, Z. Ghassemlooy, S. Zvánovec, and R. Slavík, "24-26 GHz radio-over-fiber and free-space optics for fifth-generation systems," Opt. Lett., Vol. 43, 1035-1038, 2018.
doi:10.1364/OL.43.001035

14. Jain, D. and R. Mehra, "Performance analysis of free space optical communication system for S, C and L band," 2017 International Conference on Computer, Communications and Electronics (Comptelix), IEEE, 2017.

15. Gupta, A., "Comparative analysis of free space optical communication system for various optical transmission windows under adverse weather conditions," Procedia. Comput. Sci., Vol. 89, 99-106, 2016.

16. Ashraf, M., G. Baranwal, D. Prasad, S. Idris, and M. T. Beg, "Performance analysis of ASK and PSK modulation based FSO system using coupler-based delay line filter under various weather conditions," Optic. Photon. J., Vol. 8, 277, 2018.
doi:10.4236/opj.2018.88023

17. El-Nayal, M. K., M. M. Aly, H. A. Fayed, and R. A. Abdel Rassoul, "Adaptive free space optic system based on visibility detector to overcome atmospheric attenuation," Results Phys., Vol. 14, 102392, 2019.
doi:10.1016/j.rinp.2019.102392

18. Chaudhary, S. and A. Amphawan, "The role and challenges of free-space optical systems," J. Opt. Commun., Vol. 35, 327-334, 2014.

19. Gies, D., "Safety of free-space optical communication systems," 2019 IEEE International Symposium on Product Compliance Engineering (ISPCE), IEEE, 2019.

20. Zhou, J., Y. Shao, Z. Wang, C. Li, Y. Zhou, and W. Ma, "A 16PSK-OFDM-FSO communication system under complex weather conditions," Optics and Photonics Journal, Vol. 6, 131-135, 2016.
doi:10.4236/opj.2016.68B022

21. Burdah, S., R. Alamtaha, O. N. Samijayani, S. Rahmatia, and A. Syahriar, "Performance analysis of Q factor optical communication in free space optics and single mode fiber," Universal Journal of Electrical and Electronic Engineering, Vol. 6, No. 3, 167-175, 2019.
doi:10.13189/ujeee.2019.060311

22. Gupta, A., "Comparative analysis of free space optical communication system for various optical transmission windows under adverse weather conditions," Procedia. Comput. Sci., Vol. 89, 99-106, 2016.

23. Lema, G. G., "Free space optics communication system design using iterative optimization," Journal of Optical Communications, July 13, 2020.