Vol. 103
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-09
Design and Analysis of Variable Leakage Flux Flux-Intensifying Motor for Improve Flux-Weakening Ability
By
Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021
Abstract
This paper presents a novel variable leakage flux flux-intensifying motor (VLF-FIM) to improve flux-weakening ability. The innovation lies in the variable leakage flux property and the characteristic of Ld>Lq. The two characteristics can be achieved by the adoption of magnetic barriers and magnetic bridges. Consequently, the flux-weakening ability is enhanced. Then, the topology structure and operation principle of the proposed machine are introduced. Based on the two-dimensional finite element method (2DFEM), the electromagnetic performances of the proposed motor are analyzed and compared with the conventional interior permanent magnet motor (CIPMM) in detail. The performances mainly include torque, flux-weakening ability, constant power speed range (CPSR), irreversible demagnetization risk of the PM, structural strength, etc. Finally, the results show that the proposed motor has some advantages, such as good flux-weakening ability, a wide constant power range, and a large high-efficiency area. In addition, it verifies the effectiveness of the proposed method in improving the flux-weakening ability of the motor.
Citation
Xiping Liu, Gaosheng Guo, Siting Zhu, and Jianwei Liang, "Design and Analysis of Variable Leakage Flux Flux-Intensifying Motor for Improve Flux-Weakening Ability," Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021.
doi:10.2528/PIERM21070204
References

1. Shi, Z., X. D. Sun, Y. F. Cai, and Z. B. Yang, "Torque analysis and dynamic performance improvement of a PMSM for EVs by skew angle optimization," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019.

2. Jayarajan, R., N. Fernando, and I. U. Nutkani, "A review on variable flux machine technology: Topologies, control strategies and magnetic materials," IEEE Access, Vol. 7, No. 4, 70141-70156, 2019.
doi:10.1109/ACCESS.2019.2918953

3. Thike, R. and P. Pillay, "Characterization of a variable flux machine for transportation using a vector-controlled drive," IEEE Transactions on Transportation Electrification, Vol. 4, No. 2, 494-505, 2018.
doi:10.1109/TTE.2017.2788200

4. Kim, J., D. Kim, G. Park, Y. Kim, and S. Jung, "Analysis and design of SPM type variable flux memory motor considering demagnetization characteristic of permanent magnet," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, 2018.

5. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.

6. Sun, A., J. Li, R. Qu, J. Chen, and H. Lu, "Rotor design considerations for a variable-flux flux-intensifying interior permanent magnet machine with improved torque quality and reduced magnetization current," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 784-790, 2015.
doi:10.1109/ECCE.2015.7309769

7. Yu, J., C. Liu, Z. Song, and H. Zhao, "Permeance and inductance modeling of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Transactions on Transportation Electrification, Vol. 6, No. 3, 1134-1145, 2020.
doi:10.1109/TTE.2020.3000953

8. Yu, J. and C. Liu, "Multi-Objective optimization of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Transactions on Energy Conversion, Vol. 35, No. 1, 312-323, 2020.
doi:10.1109/TEC.2019.2932953

9. Cao, L., K. T. Chau, C. H. T. Lee, and W. Lam, "Design and analysis of a new parallel-hybrid-excited machine with harmonic-shift structure," IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, 1759-1770, 2020.
doi:10.1109/TIE.2019.2907445

10. Yang, H., H. Lin, Y. Li, H. Wang, S. Fang, and Y. Huang, "Analytical modeling of switched flux memory machine," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-5, 2018.
doi:10.1109/TMAG.2018.2800462

11. Xie, Y., Z. Ning, and Z. Ma, "Comparative study on variable flux memory machines with different arrangements of permanent magnets," IEEE Access, Vol. 8, No. 2, 164304-164312, 2020.
doi:10.1109/ACCESS.2020.3022595

12. Wei, L. and T. Nakamura, "Design and optimization of a partitional stator flux-modulated memory machine," IEEE Transactions on Magnetics, Vol. 56, No. 4, 1-5, 2020.
doi:10.1109/TMAG.2019.2956055

13. Yang, H., H. Lin, and Z. Q. Zhu, "Recent advances in variable flux memory machines for traction applications: A review," CES Transactions on Electrical Machines and Systems, Vol. 2, No. 1, 34-50, 2018.
doi:10.23919/TEMS.2018.8326450

14. Liu, X. P., Y. L. Zou, and T. Z. Sun, "Design and performance analysis of a novel mechanical flux adjusting interior permanent magnet motor," Electrical Engineering, Vol. 103, No. 3, 1515-1524, 2021.
doi:10.1007/s00202-020-01189-y

15. Tessarolo, A., M. Mezzarobba, and R. Menis, "Modeling, analysis, and testing of a novel spoke-type interior permanent magnet motor with improved flux weakening capability," IEEE Transactions on Magnetics, Vol. 51, No. 4, 1-10, 2015.

16. Zhu, Z. Q., M. M. J. Al-Ani, X. Liu, and B. Lee, "A mechanical flux weakening method for switched flux permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 30, No. 2, 806-815, 2015.
doi:10.1109/TEC.2014.2380851

17. Limsuwan, N., T. Kato, K. Akatsu, and R. D. Lorenz, "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Transactions on Industry Applications, Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482

18. Limsuwan, N., Y. Shibukawa, D. D. Reigosa, and R. D. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534

19. Zhao, X., B. Kou, L. Zhang, and H. Zhang, "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 4, 182249-182259, 2020.
doi:10.1109/ACCESS.2020.3026841

20. Zhang, L., X. Zhu, J. Gao, and Y. Mao, "Design and analysis of new five-phase flux-intensifying fault-tolerant interior-permanent-magnet motor for sensorless operation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 6055-6065, 2020.
doi:10.1109/TIE.2019.2955407

21. Kato, T., M. Minowa, H. Hijikata, K. Akatsu, and R. D. Lorenz, "Design methodology for variable leakage flux ipm for automobile traction drives," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3811-3821, 2015.
doi:10.1109/TIA.2015.2439642

22. Fan, W., X. Zhu, L. Quan, W. Wu, L. Xu, and Y. Liu, "Flux-weakening capability enhancement design and optimization of a controllable leakage flux multilayer barrier pm motor," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 7814-7825, 2021.
doi:10.1109/TIE.2020.3016253

23. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering in Japan, Vol. 207, No. 4, 36-54, 2019.
doi:10.1002/eej.23162