Vol. 99
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-08-16
Cost-Effective Surface-Mount Patch Antenna with Ring Slot Using Ball Grid Array Packaging for 5G Millimeter-Wave Applications
By
Progress In Electromagnetics Research Letters, Vol. 99, 127-133, 2021
Abstract
The letter presents a compact, cost-effective, and surface-mount patch antenna element for 5G millimeter-wave (mmWave) system integration. The antenna element adopts ball grid array (BGA) packaging technology to achieve surface mount function, which can be applied to highly integrated systems. By adding a ring slot on the radiating patch, the proposed antenna obtains a wider impedance bandwidth. The antenna prototype has been simulated, manufactured, and verified. The proposed antenna element size is 5 mm × 5 mm × 1.3 mm. The measurement results show that the proposed antenna element can be used in the N257 (26.5 to 29.5 GHz) and N261 (27.5-28.35 GHz) frequency bands.
Citation
Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "Cost-Effective Surface-Mount Patch Antenna with Ring Slot Using Ball Grid Array Packaging for 5G Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 99, 127-133, 2021.
doi:10.2528/PIERL21070103
References

1. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Jan. 1981, doi: 10/dqgrtb.
doi:10.1109/TAP.1981.1142523

2. Nasimuddin, X. Qing, and Z. N. Chen, "A wideband circularly polarized stacked slotted microstrip patch antenna," IEEE Antennas Propag. Mag., Vol. 55, No. 6, 84-99, Dec. 2013, doi: 10/gjwzx6.
doi:10.1109/MAP.2013.6781708

3. Telsang, T. M. and A. B. Kakade, "Ultrawideband slotted semicircular patch antenna," Microw. Opt. Technol. Lett., Vol. 56, No. 2, 362-369, 2014, doi: 10/gj39ft.
doi:10.1002/mop.28102

4. Wang, H., X. B. Huang, and D. G. Fang, "A single layer wideband U-slot microstrip patch antenna array," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 9-12, 2008, doi: 10/d828rq.
doi:10.1109/LAWP.2007.914122

5. Deshmukh, A. A. and K. P. Ray, "Compact broadband slotted rectangular microstrip antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 1410-1413, 2009, doi: 10/ck8zkg.
doi:10.1109/LAWP.2010.2040061

6. Chair, R., C.-L. Mak, K.-F. Lee, K.-M. Luk, and A. A. Kishk, "Miniature wide-band half U-slot and half E-shaped patch antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2645-2652, Aug. 2005, doi: 10/cwf8p8.
doi:10.1109/TAP.2005.851852

7. Mitha, T. and M. Pour, "Conformal wideband microstrip patch antennas on cylindrical platforms," Progress In Electromagnetics Research Letters, Vol. 80, 1-6, 2018.
doi:10.2528/PIERL18100906

8. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019, doi: 10.1109/JPROC.2019.2933267.
doi:10.1109/JPROC.2019.2933267

9. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, Dec. 2017, doi: 10.1109/TAP.2017.2722873.
doi:10.1109/TAP.2017.2722873

10. Park, J., H. Seong, Y. N. Whang, and W. Hong, "Energy-efficient 5G phased arrays incorporating vertically polarized end re planar folded slot antenna for mmWave mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 230-241, Jan. 2020, doi: 10/ghcvvw.
doi:10.1109/TAP.2019.2930100

11. Park, J., D. Choi, and W. Hong, "Millimeter-wave phased-array antenna-in-package (AiP) using stamped metal process for enhanced heat dissipation," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 11, 2355-2359, Nov. 2019, doi: 10.1109/LAWP.2019.2938229.
doi:10.1109/LAWP.2019.2938229

12. Zhang, Y. P., "Integration of microstrip patch antenna on ceramic ball grid array package," Electron. Lett., Vol. 38, No. 5, 207-208, Feb. 2002, doi: 10.1049/el:20020144.
doi:10.1049/el:20020144

13. Zhang, Y. P., "Integrated circuit ceramic ball grid array package antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 10, 2538-2544, Oct. 2004, doi: 10.1109/TAP.2004.834427.
doi:10.1109/TAP.2004.834427

14. Sun, M., Y. P. Zhang, Y. X. Guo, K. M. Chua, and L. L. Wai, "Integration of grid array antenna in chip package for highly integrated 60-GHz radios," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 1364-1366, 2009, doi: 10.1109/LAWP.2009.2039031.
doi:10.1109/LAWP.2009.2039031

15. SalarRahimi, M., et al. "A cost-efficient 28 GHz integrated antenna array with full impedance matrix characterization for 5G NR," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 4, 666-670, Apr. 2020, doi: 10/ghh7w4.
doi:10.1109/LAWP.2020.2976188

16. Lima de Paula, I., et al. "Cost-effective high-performance air- lled siw antenna array for the global 5G 26 GHz and 28 GHz bands," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 2, 194-198, Feb. 2021, doi: 10/gjxczb.
doi:10.1109/LAWP.2020.3044114

17. Kim, G. and S. Kim, "Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmWave antenna module on FR4 substrate," IEEE Access, Vol. 9, 64306-64316, 2021, doi: 10/gjxzh2.
doi:10.1109/ACCESS.2021.3075495

18. Wang, X., X. Liu, W. Zhang, D. Hao, and Y. Liu, "Surface-mount PIFA using ball grid array packaging for 5G mmWave," Progress In Electromagnetics Research Letters, Vol. 98, 55-60, 2021.
doi:10.2528/PIERL21050203

19. Wang, X., X. Liu, W. Zhang, D. Hao, and Y. Liu, "Surface mounted microstrip antenna using ball grid array packaging for mmWave systems integration," Progress In Electromagnetics Research Letters, Vol. 98, 105-111, 2021.
doi:10.2528/PIERL21051207