login
Vol. 104
Latest Volume
All Volumes
PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-09-22
Design and Analysis of Polarization-Insensitive Broadband Microwave Absorber for Perfect Absorption
By
Progress In Electromagnetics Research M, Vol. 104, 213-222, 2021
Abstract
A simple design configuration of a broadband polarization-insensitive double-layered microwave absorber is presented here. The proposed absorber is designed using indium tin oxide (ITO) based on thin resistive film. The novelty of structure is to achieve large absorption bandwidth with more than 99% absorption. The proposed structure is modeled for 20 dB absorption bandwidth at normal incidence from 6.3 GHz to 14.2 GHz spanning over C-band, X-band, and Ku-band. Under oblique incidence the proposed structure is stable up to 60˚ for TE polarization and 45˚ for TM polarization. To understand the operating principle of absorption of proposed structure, an equivalent circuit is derived, and surface current distribution is also studied. A fabricated sample is measured, which validates our simulation.
Citation
Sudha Malik, Mondeep Saikia, Aditi Sharma, Gaganpreet Singh, Ghosh Saptarshi, Puneet Kumar Mishra, and Kumar Vaibhav Srivastava, "Design and Analysis of Polarization-Insensitive Broadband Microwave Absorber for Perfect Absorption," Progress In Electromagnetics Research M, Vol. 104, 213-222, 2021.
doi:10.2528/PIERM21062702
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., SciTech, 2004.
doi:10.1049/SBRA026E

2. Fallahi, A., A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, "Thin wideband radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4051-4058, 2010.
doi:10.1109/TAP.2010.2078482

3. Bahret, W. F., "The beginnings of stealth technology," IEEE Transactions on Aerospace Electronic System, Vol. 29, No. 4, 1377-1385, 1993.
doi:10.1109/7.259548

4. Ono, N., Y. Hayashi, A. Kisuki, and Y. Ikeda, "Anechoic chamber and wave absorber,", US Patent EP0660123 A2, 1995.

5. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1443-1454, 1988.
doi:10.1109/8.8632

6. Salisbury, W. W., "Absorbent body for electromagnetic waves,", US Patent 2599944, 1952.

7. Du Toit, L. J., "The design of Jauman absorbers," IEEE Antennas and Propagation Magazine, Vol. 36, No. 6, 17-25, 1994.
doi:10.1109/74.370526

8. Emerson, W., "Electromagnetic wave absorbers and anechoic chambers through the years," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 4, 484-490, 1973.
doi:10.1109/TAP.1973.1140517

9. Sreenath, R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultrathin triple-band polarization independent metamaterial absorber," AEU - International Journal of Electronics and Communications, Vol. 82, 508-515, Elsevier, 2017.

10. Mishra, N., D. K. Choudhary, R. Chowdhury, K. Kumari, and R. K. Chaudhary, "An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications," IEEE Access, Vol. 5, 4370-4376, 2017.
doi:10.1109/ACCESS.2017.2675439

11. Kumari, K., N. Mishra, and R. K. Chaudhary, "Wide-angle polarization independent triple band absorber based on metamaterial structure for microwave frequency applications," Progress In Electromagnetics Research C, Vol. 76, 119-127, 2017.
doi:10.2528/PIERC17051703

12. Sheokand, H., S. Ghosh, G. Singh, M. Saikia, K. V. Srivastava, J. Ramkumar, and S. A. Ramakrishna, "Transparent broadband metamaterial absorber based on resistive films," Journal of Applied Physics, Vol. 122, No. 10, 105105, 2017.
doi:10.1063/1.5001511

13. Zhang, C., Q. Cheng, J. Yang, and T. J. Cui, "Broadband metamaterial for optical transparency and microwave absorption," Applied Physics Letters, Vol. 110, No. 14, 143511, 2017.
doi:10.1063/1.4979543

14. Chen, J., Z. Hu, G. Wang, X. Huang, S. Wang, X. Hu, and M. Liu, "High impedance surface-based broadband absorbers with interference theory," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4367-4374, 2015.
doi:10.1109/TAP.2015.2459138

15. Tayde, Y., M. Saikia, and K. V. Srivastava, "Polarization-insensitive broadband multilayered absorber using screen printed patterns of resistive ink," IEEE Antennas Wireless Propagation Letters, Vol. 17, No. 12, 2489-2493, 2018.
doi:10.1109/LAWP.2018.2879274

16. Zhang, L., Y. Shi, J. X. Yang, X. Zhang, and L. Li, "Broadband transparent absorber based on indium tin oxide-polyethylene terephthalate film," IEEE Access, Vol. 7, 137848-137855, 2019.
doi:10.1109/ACCESS.2019.2942141

17. Yao, Z., S. Xiao, Z. Jiang, L. Yan, and B. Wang, "On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS," IEEE Antennas Wireless Propagation Letters, Vol. 19, No. 4, 591-595, 2020.
doi:10.1109/LAWP.2020.2972919

18. Sood, D. and C. C. Tripathi, "Broadband ultrathin low-profile metamaterial microwave absorber," Appl. Phys. A, Vol. 122, 332, 2016.
doi:10.1007/s00339-016-9884-2

19. Singh, G., A. Sharma, and S. Ghosh, "A broadband multilayer circuit analog absorber using resistive ink," Microwave Optical Technology Letters, Vol. 63, 322-328, 2020.

20. Xiao, H., Z. Qu, M. Lv, H. Du, W, Zhu, C. Wang, and R. Qin, "Optically transparent broadband and polarization insensitive microwave metamaterial absorber," Journal of Applied Physics, Vol. 126, No. 13, 2019.
doi:10.1063/1.5120579

21. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber," IET Microwave Antennas Propagation, Vol. 10, No. 8, 850-855, 2016.
doi:10.1049/iet-map.2015.0653

22. Shang, Y., Z. Shen, and S. Xiao, "On the design of single-layer circuit analog absorber using double-square-loop array," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6022-6029, Dec. 2013.
doi:10.1109/TAP.2013.2280836

23. Tayde, Y., K. Chaudhary, G. Singh, et al. "An optically transparent and flexible microwave absorber for X and Ku bands application," Microwave Optical Technology Letters, Vol. 62, 1850-1859, 2020.
doi:10.1002/mop.32269

24. Li, F., P. Chen, Y. Poo, and R.Wu, "Achieving perfect absorption by the combination of dallenbach layer and salisbury screen," Asia-Pacific Microwave Conference (APMC), 1507-1509, Kyoto, 2018.