Vol. 105
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-11-09
Manipulating LOS and NLOS MIMO Propagation Environments Using Passive Repeaters
By
Progress In Electromagnetics Research M, Vol. 105, 195-204, 2021
Abstract
This paper presents a novel method of multiple input multiple output (MIMO) communication on the basis of a passive repeater that achieves enhanced performance in both line-of-sight and non-line-of-sight environments. The passive repeater is implemented as a back-to-back antenna system. The advantage of the proposed system is an increase in the effective aperture of the base station, which allows to sufficiently extend the communication distance and ensure spatial resolution. The configuration of the passive repeater is simple, based on two connected antennas with parabolic reflectors. This configuration helps to avoid phase controller that allows to spread repeaters in the communication environment. This spreading provides multipath propagation and improves MIMO performance. In this paper we suggest to implement the proposed passive repeater with optimal placements to create multipath wave propagation and ensure spatial resolution in a line-of-sight environment, and to enhance coverage and access blind spots in a non-line-of-sight environment. The numerical analysis is performed to verify the validity of using the proposed repeater, and it is found that the proposed method helps to ensure features in the propagation environment which leads to enhanced MIMO performance.
Citation
Dmitry Y. Sukhanov, and Mahmoud Eissa, "Manipulating LOS and NLOS MIMO Propagation Environments Using Passive Repeaters," Progress In Electromagnetics Research M, Vol. 105, 195-204, 2021.
doi:10.2528/PIERM21061602
References

1. Hampton, J. R., Introduction to MIMO Communications, Cambridge University Press, 2014.

2. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, Feb. 2014.
doi:10.1109/MCOM.2014.6736761

3. Castaneda Garcia, M. H., M. Iwanow, and R. A. Stirling-Gallacher, "LOS MIMO design based on multiple optimum antenna separations," Proc. 2018 IEEE 88th Veh. Technol. Conf., 1-5, 2018.

4. Chen, Q., J. Li, Y. Kurihara, and K. Sawaya, "Measurement of reflectarray for improving MIMO channel capacity of outdoor NLOS radio channel," Proc. IEEE APS 2013, 870-871, Jul. 2013.

5. Hamed, E., et al. "Real-time distributed MIMO systems," 2016 ACM SIGCOMM Conference, SIGCOMM'16, 412-425, Aug. 2016.
doi:10.1145/2934872.2934905

6. Bharadia, D. and S. Katti, "Fastforward: Fast and constructive full duplex relays," ACM SIGCOMM Computer Communication Review, Vol. 44, 199-210, Aug. 2014.

7. Dunna, M., C. Zhang, D. Sievenpiper, and D. Bharadia, "Enabling virtual MIMO with smart surfaces," Proc. ACM Annu. Int. Conf. Mobile Comput. Netw., 1-14, Sep. 2020.

8. Honma, N., Y. Takahashi, and Y. Tsunekawa, "Maximizing SNR using tunable passive repeater: Deterministic control method," Proc. IEEE Antennas and Propagation Society International Symposium (APSURSI), 1129-1130, 2014.

9. Wang, L., S. Qu, J. Li, Q. Chen, Q. Yuan, and K. Sawaya, "Experimental investigation of MIMO performance using passive repeater in multipath environment," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 752-755, 2011.
doi:10.1109/LAWP.2011.2162812

10. Naoki, H., T. Yuta, and T. Yoshitaka, "Manipulating MIMO propagation environment using tunable passive repeater," Proc. of IEEE Asia-Pacific Microwave Conference (APMC), 504-506, 2014.

11. Ha, D., D. Choi, H. Kim, J. Kum, J. Lee, and Y. Lee, "Passive repeater for removal of blind spot in NLOS path for 5G fixed wireless access (FWA) system," IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 2049-2050, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8073067

12. Norton, M., "Microwave system engineering using large passive reflectors," IRE Transactions on Communications Systems, Vol. 10, No. 3, 304-311, Sep. 1962.
doi:10.1109/TCOM.1962.1088659

13. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 2016.

14. Jamunaa, D., G. K. Mahanti, and F. N. Hasoon, "Optimized inter-element arc spacing and ring radius in the synthesis of phase-only reconfigurable concentric circular array antenna using various evolutionary algorithms," Electromagnetics, Vol. 40, No. 2, 104-118, 2020.
doi:10.1080/02726343.2019.1710683