Vol. 104
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-16
Design and Implementation of an Integrated Switched-Oscillator Impulse Generator
By
Progress In Electromagnetics Research M, Vol. 104, 61-70, 2021
Abstract
An integrated wireless impulse generator has been designed, simulated, fabricated and tested. Switched oscillator topology has been used as an impulse generator. A switched oscillator consists of a low impedance transmission line, which is charged by a DC source with a large input impedance. The transmission line is connected to a fast closing switch at one end and a high feed-point impedance antenna at the other end. After charging the transmission line, closing the fast switch short circuits the transmission line, resulting in a transient wave propagating toward the antenna. The mismatch between transmission line characteristic impedance and the antenna feed point impedance causes a reflection at the antenna terminal. Due to the short circuit at switch terminal, the reflected signal will reflect back at the switch terminal as well. This back and forth reflection generates a series of pulses at the antenna terminal which will be radiated by the antenna. The switched oscillator impulse generator is designed to operate in the industrial, scientific and medical (ISM) radio frequency band.
Citation
Samira Mohammadzamani, and Behzad Kordi, "Design and Implementation of an Integrated Switched-Oscillator Impulse Generator," Progress In Electromagnetics Research M, Vol. 104, 61-70, 2021.
doi:10.2528/PIERM21060301
References

1. Tan, Q., T. Luo, T. Wei, J. Liu, L. Lin, and J. Xiong, "A wireless passive pressure and temperature sensor via a dual LC resonant circuit in harsh environments," Journal of Microelectromechanical Systems, Vol. 26, No. 2, 351-356, 2017.
doi:10.1109/JMEMS.2016.2642580

2. Yao, J., S. Tjuatja, and H. Huang, "Real-time vibratory strain sensing using passive wireless antenna sensor," IEEE Sensors Journal, Vol. 15, No. 8, 4338-4345, 2015.
doi:10.1109/JSEN.2015.2416672

3. Viikari, V., J. Song, and H. Seppa, "Passive wireless sensor platform utilizing a mechanical resonator," IEEE Sensors Journal, Vol. 13, No. 4, 1180-1186, 2013.
doi:10.1109/JSEN.2012.2231407

4. Bhadra, S., D. S. Y. Tan, D. J. Thomson, M. S. Freund, and G. E. Bridges, "A wireless passive sensor for temperature compensated remote pH monitoring," IEEE Sensors Journal, Vol. 13, No. 6, 2428-2436, 2013.
doi:10.1109/JSEN.2013.2255519

5. Zhou, I., et al. "Internet of things 2.0: Concepts, applications, and future directions," IEEE Access, Vol. 9, 70961-71012, May 2021.
doi:10.1109/ACCESS.2021.3078549

6. Yazdani, M., D. J. Thomson, and B. Kordi, "Passive wireless sensor for measuring AC electric field in the vicinity of high-voltage apparatus," IEEE Trans. Industrial Electronics, Vol. 63, No. 7, 4432-4441, 2016.
doi:10.1109/TIE.2016.2546845

7. Baum, C. E., "Switched oscillators," Circuit and Electromagnetic System Design Note, 2000.

8. Baum, C. E., "Differential switched oscillators and associated antennas," Circuit and Electromagnetic System Design Note, 2001.

9. Vega, F., F. Rachidi, and D. V. Giri, "A new set of electrodes for coaxial quarter wave switched oscillators," IEEE Trans. Plasma Science, Vol. 41, No. 9, 2545-2550, Sep. 2013.
doi:10.1109/TPS.2013.2276400

10. Armanious, M., J. S. Tyo, M. C. Skipper, M. D. Abdalla, W. D. Prather, and J. E. Lawrance, "Interaction between geometric parameters and output waveforms in high-power quarter-wave oscillators," IEEE Trans. Plasma Science, Vol. 38, No. 5, 1124-1131, Apr. 2010.
doi:10.1109/TPS.2010.2044519

11. Vega, F. and F. Rachidi, "A switched oscillator geometry inspired by a curvilinear space - Part I: DC considerations," IEEE Trans. Plasma Science, Vol. 44, No. 10, 2240-2248, Jun. 2016.
doi:10.1109/TPS.2016.2581308

12. Vega, F. and F. Rachidi, "A switched oscillator geometry inspired by a curvilinear space - Part II: Electrodynamic considerations," IEEE Trans. Plasma Science, Vol. 44, No. 10, 2249-2257, Jul. 2016.
doi:10.1109/TPS.2016.2581586

13. Vega, F., F. Rachidi, N. Mora, N. Peña, and F. Roman, "Design, realization, and experimental test of a coaxial exponential transmission line adaptor for a half-impulse radiating antenna," IEEE Trans. Plasma Science, Vol. 41, No. 1, 137-181, Dec. 2012.