Vol. 103
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-19
Fast Optimization of Array Antenna Enclosed by Asymmetric Radome Using AEP Combined with Enhanced HGAPSO
By
Progress In Electromagnetics Research M, Vol. 103, 161-171, 2021
Abstract
An efficient analysis and optimization method is proposed to compensate the influence of asymmetric radome on an antenna by correcting amplitude and phase of the excitations. The asymmetrical and heteromorphic radomes are inevitable for the radar on high-speed aircraft. Many previous researches focused on the optimization of the radome structure and thickness to reduce the influence of radomes. However, the influence of complex streamlined radome cannot be compensated by merely optimizing the structure and thickness of the radome. Therefore, an alternative optimization method, optimizing amplitude and phase of feeds, is used in this paper. This paper adopts the active element pattern (AEP) technique, utilizing full-wave simulation method to extract the AEP for each antenna element and computing radiation patterns of array antenna by using vector composition of AEP. In combination with hybrid genetic algorithm-particle swarm optimization (HGAPSO), the antenna radiation characteristics can be obtained by updating excitations, which avoid the repeated full-wave simulation in the optimization process. Furthermore, the speed updating formula of PSO algorithm is improved combined with prior information, and the convergence speed is further increased. Finally, a 64 elements array antenna-radome system was optimized as an example in the cases of continuously adjustable phase and digital discrete phase.
Citation
Legen Dai, Yong-Jun Xie, Chungang Zhang, and Peiyu Wu, "Fast Optimization of Array Antenna Enclosed by Asymmetric Radome Using AEP Combined with Enhanced HGAPSO," Progress In Electromagnetics Research M, Vol. 103, 161-171, 2021.
doi:10.2528/PIERM21051306
References

1. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, 2nd Ed., Artech House, 2010.

2. Orta, R., R. Tascone, and T. Zich, "Performance degradation of dielectric radome covered antennas," IEEE Trans. Antennas Propagat., Vol. 36, No. 12, 1707-1713, 1988.
doi:10.1109/8.14392

3. Chikaoka, S., I. Chiba, Y. Sunahara, and T. Numazaki, "Pattern synthesis of an array antenna in a radome," Antennas and Propagation Society International Symposium, 1990, AP-S, Merging Technologies for the 90’s, Digest, 852-855, IEEE, 1990.
doi:10.1109/APS.1990.115242

4. Gordon, R. K. and R. Mittra, "Finite element analysis of axisymmetric radomes," IEEE Trans. Antennas Propagat., Vol. 41, No. 7, 975-981, 1993.
doi:10.1109/8.237631

5. Hsu, F., P. R. Chang, and K. K. Chan, "Optimization of two-dimensional radome boresight error performance using simulated annealing technique," IEEE Trans. Antennas Propagat., Vol. 41, No. 9, 1195-1203, 1993.
doi:10.1109/8.247745

6. Hsu, F., K. K. Chan, P. R. Chang, and S. H. Chao, "Optimal boresight error design of radomes of revolving symmetry," Electron. Lett., Vol. 30, No. 19, 1561-1562, 1994.
doi:10.1049/el:19941083

7. Nair, R. U. and R. M. Jha, "Novel A-sandwich radome design for airborne applications," Electron. Lett., Vol. 43, No. 15, 787-788, 2007.
doi:10.1049/el:20070825

8. Nair, R. U. and R. M. Jha, "Electromagnetic performance analysis of a novel monolithic radome for airborne applications," IEEE Trans. Antennas Propagat., Vol. 57, No. 11, 3664-3668, Nov. 2009.
doi:10.1109/TAP.2009.2026595

9. Xu, W. Y., B. Y. Duan, P. Li, N. G. Hu, and Y. Y. Qiu, "Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes," IEEE Trans. Antennas Propagat., Vol. 62, No. 11, 5880-5885, 2014.
doi:10.1109/TAP.2014.2352361

10. Pozar, D. M., "The active element pattern," IEEE Trans. Antennas Propagat., Vol. 42, No. 8, 1176-1178, 1994.
doi:10.1109/8.310010

11. Ou Yang, J., Q. R. Yuan, F. Yang, H. J. Zhou, Z. P. Nie, and Z. Q. Zhao, "Synthesis of conformal phased array with improved NSGA-II algorithm," IEEE Trans. Antennas Propagat., Vol. 57, No. 12, 4006-4009, 2009.
doi:10.1109/TAP.2009.2026714

12. He, Q. Q., B. Z. Wang, and W. Shao, "Radiation pattern calculation for arbitrary conformal arrays that include mutual-coupling effects," IEEE Antennas Propag. Mag., Vol. 52, No. 2, 57-63, 2010.
doi:10.1109/MAP.2010.5525566

13. Yang, X. S., H. Qian, B. Z. Wang, and S. Q. Xiao, "Radiation pattern computation of pyramidal conformal antenna array with active-element pattern technique," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 28-37, 2011.
doi:10.1109/MAP.2011.5773565

14. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650

15. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969

16. Ho, S. L., S. Y. Yang, G. Z. Ni, E. W. C. Lo, and H. C.Wong, "A particle swarm optimization-based method for multiobjective design optimizations," IEEE Trans. Magn., Vol. 41, No. 5, 1756-1759, 2005.
doi:10.1109/TMAG.2005.846033

17. Ho, S. L., S. Y. Yang, G. Z. Ni, and H. C. Wong, "A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices," IEEE Trans. Magn., Vol. 42, No. 4, 1107-1110, 2006.
doi:10.1109/TMAG.2006.871426

18. Liu, L. L., R. S. Hu, X. P. Hu, G. P. Zhao, and S. Wang, "A hybrid PSO-GA algorithm for job shop scheduling in machine tool production," Inter. J. of Product. Resear., Vol. 53, No. 19, 5755-5781, 2015.
doi:10.1080/00207543.2014.994714

19. Zhang, Q., R. M. Ogren, and S. C. Kong, "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO-GA and basic GA," Applied Energy, Vol. 165, 676-684, 2016.
doi:10.1016/j.apenergy.2015.12.044