1. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, 2nd Ed., Artech House, 2010.
2. Orta, R., R. Tascone, and T. Zich, "Performance degradation of dielectric radome covered antennas," IEEE Trans. Antennas Propagat., Vol. 36, No. 12, 1707-1713, 1988.
doi:10.1109/8.14392
3. Chikaoka, S., I. Chiba, Y. Sunahara, and T. Numazaki, "Pattern synthesis of an array antenna in a radome," Antennas and Propagation Society International Symposium, 1990, AP-S, Merging Technologies for the 90’s, Digest, 852-855, IEEE, 1990.
doi:10.1109/APS.1990.115242
4. Gordon, R. K. and R. Mittra, "Finite element analysis of axisymmetric radomes," IEEE Trans. Antennas Propagat., Vol. 41, No. 7, 975-981, 1993.
doi:10.1109/8.237631
5. Hsu, F., P. R. Chang, and K. K. Chan, "Optimization of two-dimensional radome boresight error performance using simulated annealing technique," IEEE Trans. Antennas Propagat., Vol. 41, No. 9, 1195-1203, 1993.
doi:10.1109/8.247745
6. Hsu, F., K. K. Chan, P. R. Chang, and S. H. Chao, "Optimal boresight error design of radomes of revolving symmetry," Electron. Lett., Vol. 30, No. 19, 1561-1562, 1994.
doi:10.1049/el:19941083
7. Nair, R. U. and R. M. Jha, "Novel A-sandwich radome design for airborne applications," Electron. Lett., Vol. 43, No. 15, 787-788, 2007.
doi:10.1049/el:20070825
8. Nair, R. U. and R. M. Jha, "Electromagnetic performance analysis of a novel monolithic radome for airborne applications," IEEE Trans. Antennas Propagat., Vol. 57, No. 11, 3664-3668, Nov. 2009.
doi:10.1109/TAP.2009.2026595
9. Xu, W. Y., B. Y. Duan, P. Li, N. G. Hu, and Y. Y. Qiu, "Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes," IEEE Trans. Antennas Propagat., Vol. 62, No. 11, 5880-5885, 2014.
doi:10.1109/TAP.2014.2352361
10. Pozar, D. M., "The active element pattern," IEEE Trans. Antennas Propagat., Vol. 42, No. 8, 1176-1178, 1994.
doi:10.1109/8.310010
11. Ou Yang, J., Q. R. Yuan, F. Yang, H. J. Zhou, Z. P. Nie, and Z. Q. Zhao, "Synthesis of conformal phased array with improved NSGA-II algorithm," IEEE Trans. Antennas Propagat., Vol. 57, No. 12, 4006-4009, 2009.
doi:10.1109/TAP.2009.2026714
12. He, Q. Q., B. Z. Wang, and W. Shao, "Radiation pattern calculation for arbitrary conformal arrays that include mutual-coupling effects," IEEE Antennas Propag. Mag., Vol. 52, No. 2, 57-63, 2010.
doi:10.1109/MAP.2010.5525566
13. Yang, X. S., H. Qian, B. Z. Wang, and S. Q. Xiao, "Radiation pattern computation of pyramidal conformal antenna array with active-element pattern technique," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 28-37, 2011.
doi:10.1109/MAP.2011.5773565
14. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650
15. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969
16. Ho, S. L., S. Y. Yang, G. Z. Ni, E. W. C. Lo, and H. C.Wong, "A particle swarm optimization-based method for multiobjective design optimizations," IEEE Trans. Magn., Vol. 41, No. 5, 1756-1759, 2005.
doi:10.1109/TMAG.2005.846033
17. Ho, S. L., S. Y. Yang, G. Z. Ni, and H. C. Wong, "A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices," IEEE Trans. Magn., Vol. 42, No. 4, 1107-1110, 2006.
doi:10.1109/TMAG.2006.871426
18. Liu, L. L., R. S. Hu, X. P. Hu, G. P. Zhao, and S. Wang, "A hybrid PSO-GA algorithm for job shop scheduling in machine tool production," Inter. J. of Product. Resear., Vol. 53, No. 19, 5755-5781, 2015.
doi:10.1080/00207543.2014.994714
19. Zhang, Q., R. M. Ogren, and S. C. Kong, "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO-GA and basic GA," Applied Energy, Vol. 165, 676-684, 2016.
doi:10.1016/j.apenergy.2015.12.044