Vol. 98
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-06-22
Surface Mounted Microstrip Antenna Using Ball Grid Array Packaging for mmWave Systems Integration
By
Progress In Electromagnetics Research Letters, Vol. 98, 105-111, 2021
Abstract
In this letter, two cost-effective surface-mount patch antenna elements for millimeter-wave (mmWave) systems using ball grid array (BGA) packaging are presented. A single-layer substrate based on FR4 is used to meet the low-cost requirements. The BGA packaging makes the proposed antenna element compact and easy to integrate. A U-slot is added to the patch to improve the impedance bandwidth of the patch antenna, and a vertical transition is designed to transmit the excitation signal by using a plated through-hole (PTH). The design process of the antenna is illustrated in detail. The antenna prototype has been simulated, fabricated, and measured to validate the design. The size of the fabricated prototype is 5 mm × 5 mm × 1.3 mm, which is very suitable for integration into a mmWave system.
Citation
Xi Wang, Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "Surface Mounted Microstrip Antenna Using Ball Grid Array Packaging for mmWave Systems Integration," Progress In Electromagnetics Research Letters, Vol. 98, 105-111, 2021.
doi:10.2528/PIERL21051207
References

1. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Jan. 1981.
doi:10.1109/TAP.1981.1142523

2. Garcia Zuazola, I. J., A. Sharma, M. Filip, and W. G. Whittow, "Antenna using a magnetic-slab located in the principal magnetic-field region beneath the patch," Progress In Electromagnetics Research C, Vol. 110, 229-241, 2021.
doi:10.2528/PIERC21010303

3. Kaur, K., A. Kumar, and N. Sharma, "Split ring slot loaded compact CPW-fed printed monopole antennas for ultra-wideband applications with band notch characteristics," Progress In Electromagnetics Research C, Vol. 110, 39-54, 2021.
doi:10.2528/PIERC20122401

4. Khan, M. and D. Chatterjee, "Analysis of reactive loading in a U-slot microstrip patch using the theory of characteristic modes [Antenna applications corner]," IEEE Antennas Propag. Mag., Vol. 60, No. 6, 88-97, Dec. 2018.
doi:10.1109/MAP.2018.2870653

5. Liu, S., S.-S. Qi, W. Wu, and D.-G. Fang, "Single-layer single-patch four-band asymmetrical U-slot patch antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4895-4899, Sep. 2014.
doi:10.1109/TAP.2014.2335816

6. Mok, W. C., S. H. Wong, K. M. Luk, and K. F. Lee, "Single-layer single-patch dual-band and triple-band patch antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4341-4344, Aug. 2013.
doi:10.1109/TAP.2013.2260516

7. Lee, K. F., S. L. Steven Yang, A. A. Kishk, and K. M. Luk, "The versatile U-slot patch antenna," IEEE Antennas Propag. Mag., Vol. 52, No. 1, 71-88, Feb. 2010.
doi:10.1109/MAP.2010.5466402

8. Zhang, Y. P. and D. Liu, "Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2830-2841, Oct. 2009.
doi:10.1109/TAP.2009.2029295

9. Zhang, Y., "Antenna-in-package technology: Its early development [Historical corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
doi:10.1109/MAP.2019.2907916

10. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
doi:10.1109/JPROC.2019.2933267

11. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
doi:10.1109/TAP.2017.2700888

12. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514