Vol. 99
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-07-19
A Low-Profile Half-Mode Substrate Integrated Waveguide Filtering Antenna with High Frequency Selectivity
By
Progress In Electromagnetics Research Letters, Vol. 99, 35-43, 2021
Abstract
A low-profile half-mode substrate integrated waveguide (HMSIW) filtering antenna with high frequency selectivity is proposed in this letter. The proposed antenna with a height of 0.014λ00 is the free-space wavelength) consists of a slot-loaded HMSIW cavity, two parasitic patches, and five shorting pins. An upper-edge radiation null is generated by the interaction between the HMSIW cavity and parasitic patches. A rectangular slot etched on the HMSIW cavity is adopted to generate another null to improve the filtering performances at the upper stopband. Besides, the radiation in the lower stopband is suppressed by two nulls which emerge due to placing shorting pins under two parasitic patches. Thus, four radiation nulls can be obtained to enhance the frequency selectivity. The measured results illustrate that the proposed antenna provides an impedance bandwidth of 4.3% ranging from 2.74 to 2.86 GHz and a peak gain of 6.76 dBi during the operating frequency band. Moreover, four radiation nulls appear at 2.34, 2.56, 3, and 3.24 GHz in the lower and upper stopbands.
Citation
Hai-Yan Wang, Gang Zhao, Rui-Yang Li, and Yong-Chang Jiao, "A Low-Profile Half-Mode Substrate Integrated Waveguide Filtering Antenna with High Frequency Selectivity," Progress In Electromagnetics Research Letters, Vol. 99, 35-43, 2021.
doi:10.2528/PIERL21051206
References

1. Shi, J., X. Wu, and Z. N. Chen, "A compact differential filtering quasi-Yagi antenna with high frequency selectivity and low cross-polarization levels," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1573-1576, 2015.
doi:10.1109/LAWP.2015.2413054

2. Hu, P. F., Y. M. Pan, and X. Y. Zhang, "Broadband filtering dielectric resonator antenna with wide stopband," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 2079-2084, Apr. 2017.
doi:10.1109/TAP.2017.2670438

3. Chu, H., H. Hong, and X. H. Zhu, "Implementation of synthetic material in dielectric resonatorbased filtering antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3690-3695, Jul. 2018.
doi:10.1109/TAP.2018.2819891

4. Tang, H., C. W. Tong, and J. X. Chen, "Differential dual-polarized filtering dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4298-4302, Aug. 2018.
doi:10.1109/TAP.2018.2836449

5. Hu, P. F., Y. M. Pan, and X. Y. Zhang, "A compact quasi-isotropic dielectric resonator antenna with filtering response," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 1294-1299, Feb. 2019.
doi:10.1109/TAP.2018.2883611

6. Gao, Y., Y. C. Jiao, and Z. B. Weng, "A filtering dielectric resonator antenna with high band-edge selectivity," Progress In Electromagnetics Research M, Vol. 89, 63-71, 2020.
doi:10.2528/PIERM19112703

7. Wang, Y., Y. L. Chen, and J. F. Qian, "A dual-mode resonator-fed gap coupled filtering antenna with improved selectivity and bandwidth," Progress In Electromagnetics Research Letters, Vol. 87, 137-143, 2019.

8. Liu, G., Y. M. Pan, and X. Y. Zhan, "Compact filtering patch antenna arrays for marine communications," IEEE Trans. Antennas Propag., Vol. 69, No. 10, 11408-11418, Oct. 2020.

9. Hu, H. T., F. C. Chen, and Q. X. Chu, "Novel broadband filtering slotline antennas excited by multimode resonators," IEEE Antennas Wireless Propag. Lett., Vol. 16, 489-492, 2017.
doi:10.1109/LAWP.2016.2585524

10. Mao, C. X., S. Gao, and Y. Wang, "Dual-band patch antenna with filtering performance and harmonic suppression," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4074-4077, Sep. 2016.
doi:10.1109/TAP.2016.2574883

11. Hsieh, C. Y., C. H. Wu, and T. G. Ma, "A compact dual-band filtering patch antenna using step impedance resonators," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1056-1059, 2015.
doi:10.1109/LAWP.2015.2390033

12. Chu, H., C. Jin, and J. X. Chen, "A 3-D millimeter-wave filtering antenna with high selectivity and low cross-polarization," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2375-2380, May 2015.
doi:10.1109/TAP.2015.2411282

13. Liu, Q., D. F. Zhou, and J. Shi, "High-selective triple-mode SIW bandpass filter using higher-order resonant modes," Electronics Letters, Vol. 56, No. 1, 37-39, Jan. 2020.
doi:10.1049/el.2019.3234

14. Liu, X., X. F. Zhang, and K. Xu, "A filtering antenna with high frequency selectivity using stacked dual-slotted substrate integrated cavities," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 8, 1311-1315, Aug. 2020.
doi:10.1109/LAWP.2020.2998125

15. Hua, C. Z., X. Y. Jin, and M. Liu, "Design of compact vertically stacked SIW end-fire filtering antennas with transmission zeros," Progress In Electromagnetics Research Letters, Vol. 87, 67-73, 2019.
doi:10.2528/PIERL19072205

16. Fan, C., B. Wu, and Y. L. Wang, "High-gain SIW filtering antenna with low H-plane cross polarization and controllable radiation nulls," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 2336-2340, Apr. 2021.
doi:10.1109/TAP.2020.3018595

17. Xu, K., J. Shi, and X. M. Qing, "A substrate integrated cavity backed filtering slot antenna stacked with a patch for frequency selectivity enhancement," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 10, 1910-1914, Oct. 2018.
doi:10.1109/LAWP.2018.2869533

18. Niu, B. J. and J. H. Tan, "Dual-layer SIW cavity filtering antenna with a controllable radiation band and two radiation nulls," Electronics Letters, Vol. 55, No. 13, 723-724, Jun. 2019.
doi:10.1049/el.2019.0058

19. Yusuf, Y., H. T. Cheng, and X. Gong, "A seamless integration of 3-D vertical filters with highly efficient slot antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4016-4022, Nov. 2011.
doi:10.1109/TAP.2011.2164186

20. Liu, Q., D. F. Zhou, and D. L. Lv, "Realisation of compact quasi-elliptic bandpass filters based on coupled eighth-mode SIW cavities," IET Microw. Antennas Propag., Vol. 13, No. 13, 2256-2263, Jul. 2019.
doi:10.1049/iet-map.2018.5944

21. Deng, H. W., L. Sun, and Y. F. Xue, "High selectivity and common-mode suppression balanced bandpass filter with TM dual-mode SIW cavity," IET Microw. Antennas Propag., Vol. 13, No. 12, 2129-2133, Jul. 2019.
doi:10.1049/iet-map.2018.6079

22. Dhwaj, K., X. Q. Li, and L. J. Jiang, "Low-profile diplexing filter/antenna based on common radiating cavity with quasi-elliptic response," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 10, 1783-1787, Oct. 2018.
doi:10.1109/LAWP.2018.2866786

23. Liu, Q. W., L. Zhu, and J. P. Wang, "A wideband patch and SIW cavity hybrid antenna with filtering response," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 5, 836-840, May 2020.
doi:10.1109/LAWP.2020.2981650

24. Li, P. K., C. J. You, and H. F. Yu, "Codesigned high-efficiency single-layered substrate integrated waveguide filtering antenna with a controllable radiation null," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 2, 295-298, Feb. 2018.
doi:10.1109/LAWP.2017.2787541

25. Hu, K. Z., M. C. Tang, and D. J. Li, "Design of compact, single-layered substrate integrated waveguide filtenna with parasitic patch," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 1134-1139, Feb. 2020.
doi:10.1109/TAP.2019.2938574

26. Hong, W., et al. (Keynote Talk) "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Joint 31st Int. Conf. on Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, Sept. 18–22, 2006.

27. Zhou, K., C.-X. Zhou, and W. Wu, "Resonance characteristics of substrate-integrated rectangular cavity and their applications to dualband and wide-stopband bandpass filters design," IEEE Trans. Microw Theory Techn., Vol. 65, No. 5, 1511-1524, May 2017.
doi:10.1109/TMTT.2016.2645156

28. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, Wiley, New York, NY, USA, 2005.

29. Li, L., D. Pang, and Y. B. Feng, "A low-profile third-order half-mode SIW filtering antenna with low H-plane cross polarization and good sideband suppression," IEEE Antennas Wireless Propag. Lett., Vol. 18, 2503-2507, 2019.