Vol. 98
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-06-24
Plastronic Circular Line Matched Dipole Antenna
By
Progress In Electromagnetics Research Letters, Vol. 98, 113-120, 2021
Abstract
A compact 3-D, circular line matched dipole (CLMD) antenna is presented in this paper. The realization of the antenna is based on Laser Direct Structuring (LDS) plastronic technology, enabling metallization on plastic parts. Cylindrical holder is chosen to carry the dipole, which implies high bending constraints on the antenna. Miniaturization of the radiating element is obtained by an effective use of 3-D space, resulting in a very low profile length dimensions of 0.14λ × 0.14λ × 0.05λ operating at 868 MHz. Specific attention is paid to the input impedance change due to conformation. An equivalent circuit model is proposed to take into account the conformation and design the matching line. Both simulated and measured results demonstrate good performances, with a 30 MHz bandwidth (i.e., a relative bandwidth of 3.5% with S11 < -10 dB) around the working frequency. The LDS prototype achieves a maximum gain of 1.2 dBi with a quasi-omnidirectional radiation pattern. This compact and conformed design presents a real interest for pervasive highly integrated ISM band IoT sensors.
Citation
Gildas Bengloan, Anne Chousseaud, Bruno Froppier, Jacques Girard, Marc Brunet, and Eduardo Motta Cruz, "Plastronic Circular Line Matched Dipole Antenna," Progress In Electromagnetics Research Letters, Vol. 98, 113-120, 2021.
doi:10.2528/PIERL21051205
References

1. Marrocco, G., "Gain-optimized self-resonant meander line antennas for RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 302-305, 2003.
doi:10.1109/LAWP.2003.822198

2. Best, G. R. and J. D. Morrow, "On the significance of current vector alignment in establishing the resonant frequency of small space-filling wire antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 201-204, 2003.
doi:10.1109/LAWP.2003.819686

3. Volakis, J., et al. Small Antennas: Miniaturization Techniques and Applications, McGraw-Hill, 2010.

4. Mosallei, H. and K. Sarab, "Engineered meta-substrates for antenna miniaturization," Proc. 2004 URSI Int. Symposium on Electromagn. Theory, 191-193, 2004.

5. Best, G. R. and J. M. MCGinthy, "A comparison of electrically small HF antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 37-40, 2005.
doi:10.1109/APS.2005.1551474

6. Kumar, H., et al. "A wristwatch-based wireless sensor platform for IoT health monitoring applications," Sensors, Vol. 20, 1675-1680, 2020.
doi:10.3390/s20061675

7. Cihangir, A., et al. "Antenna solutions for 4G smartphones in laser direct structuring technology," Radioengineering, Vol. 25, 419-428, 2016.
doi:10.13164/re.2016.0419

8. Sonnerat, F., et al. "Innovative 4G mobile phone LDS antenna module using plastronics integration scheme," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013.

9. Ahmed, S., F. Tahir, A. Shamim, and H. Cheema, "A compact Kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015.
doi:10.1109/LAWP.2015.2424681

10. Wu, K., J. Sun, and G. Chen, "Flexible printed circuit board (FPC) antennas for mobile phone operation," 5th International Microsystems Packaging Assembly and Circuits Technology Conference, 1-4, 2010.

11. Tang, C., "Input impedance of arc antennas and short helical radiators," IEEE Transactions on Antennas and Propagation, Vol. 1, 2-9, 1964.
doi:10.1109/TAP.1964.1138164

12. Arumugam, D., et al. "The effect of curvature on the performance and readability of passive UFH RFID tags," ACES Journal, 2010.

13. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley-Interscience, 2005.

14. Marrocco, G., "The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques," IEEE Antennas and Propagation Magazine, Vol. 50, 66-79, 2008.
doi:10.1109/MAP.2008.4494504

15. Wang, S., et al. "A novel reversed T-match antenna with compact size and low profile for ultrawideband applications," IEEE Transactions on Antennas and Propagation, Vol. 60, 4933-4937, 2012.
doi:10.1109/TAP.2012.2207360

16. Gao, X., et al. "Conformal VHF log-periodic balloon antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, 2756-2761, 2015.
doi:10.1109/TAP.2015.2414478

17. Marchand, N., "Transmission line conversion transformers," Electronics, Vol. 17, 142-145, 1944.

18. Trifunovic, V. and B. Jokanovic, "Review of printed Marchand and double Y baluns: Characteristics and application," IEEE Trans. Microwave Theory Tech., Vol. 42, 1454-1462, 1994.
doi:10.1109/22.297806

19. Anagnostou, D. E., et al. "A 0–55-GHz coplanar waveguide to coplanar strip transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 1-6, 2008.
doi:10.1109/TMTT.2007.911909

20. Chiou, H.-K., C.-Y. Chang, and H.-H. Lin, "Balun design for uniplanar broad band double balanced mixer," Electronics Letters, Vol. 31, 2113-2114, 1995.
doi:10.1049/el:19951404

21. King, R. W. P, The Theory of Linear Antennas, Harvard University Press, 1956.
doi:10.4159/harvard.9780674182189

22. DeMarinis, J., "The antenna cable as a source of error in EMI measurements," IEEE 1988 International Symposium on Electromagnetic Compatibility, 1988.