Vol. 98
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-06-22
A Low-F/d Wideband Transmitarray Antenna
By
Progress In Electromagnetics Research Letters, Vol. 98, 95-103, 2021
Abstract
In this paper, a wide 3-dB gain bandwidth transmitarray (TA) antenna with low focal length to diameter ratio (F/D) is presented. The TA comprises four identical metasurface layers, and the metasurfaces are printed on thin dielectric substrates, which are separated by air gaps. The unit cells of the metasurfaces are constructed by etching slots on the metal layers, which include a serrated crevice and two disjunct slots. The F/D of the TA is designed as 0.48 to accommodate the applications required low profiles. A TA is constructed by arranging high transmission elements at the center and the other elements in the external of the aperture. A transmitarray antenna (TAA) operating at 9~13 GHz is designed by applying a horn antenna to the TA, which achieves a measured 1-dB gain bandwidth of 10.5% (3-dB gain bandwidth of 23.3% and measured maximum gain of 22.48 dBi at 10.5 GHz) and a maximum measured aperture efficiency of 38.4%. Compared to the reported works, the proposed TA has outstanding F/D and wide 3-dB gain bandwidth.
Citation
Yan-Fang Liu, Lin Peng, Bo Wang, Wei-Sheng Yu, Tian-Cheng Zheng, and Xing Jiang, "A Low-F/d Wideband Transmitarray Antenna," Progress In Electromagnetics Research Letters, Vol. 98, 95-103, 2021.
doi:10.2528/PIERL21051203
References

1. Federici, J. F., B. Schulkin, and F. Huang, "THz imaging and sensing for security," Semicond. Sci. Technol., Vol. 20, No. 7, S266-S280, 2005.
doi:10.1088/0268-1242/20/7/018

2. Song, H. J. and T. Nagatsuma, "Present and future of terahertz communications," IEEE Trans. Terahertz Sci. Technol., Vol. 1, No. 1, 256-263, Sep. 2011.
doi:10.1109/TTHZ.2011.2159552

3. Yang, X., Y. Zhou, L. Xing, and Y. Zhao, "A wideband and low-profile transmitarray antenna using different types of unit-cells," Microwave and Optical Technology Letters, Vol. 61, No. 6, 1584-1589, 2019.
doi:10.1002/mop.31754

4. Menzel, W., D. Pilz, and M. Al-Tikriti, "Millimeter-wave folded reflector antennas with high gain, low loss, and low profile," IEEE Antennas Propag. Mag., Vol. 44, No. 3, 24-29, Jun. 2002.
doi:10.1109/MAP.2002.1028731

5. Rahmati, B. and H. R. Hassan, "Low-profile slot transmitarray antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 174-181, Jan. 2015.
doi:10.1109/TAP.2014.2368576

6. Ramazannia Tuloti, S. H., P. Rezaei, and F. Tavakkol Hamedani, "High-efficient wideband transmitarray antenna," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 817-820, May 2018.
doi:10.1109/LAWP.2018.2817363

7. Abdelrahman, A. H., P. Nayeri, A. Z. Elsherbeni, and F. Yang, "Bandwidth improvement methods of transmitarray antennas," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 2946-2954, Jul. 2015.
doi:10.1109/TAP.2015.2423706

8. Liu, G., H. Wang, J. Jiang, F. Xue, and M. Yi, "A high-efficiency transmitarray antenna using double split ring slot elements," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1415-1418, 2015.
doi:10.1109/LAWP.2015.2409474

9. Liu, S. L., X. Q. Lin, Z. Q. Yang, Y. J. Chen, and J. W. Yu, "W-band low-profile transmitarray antenna using different types of FSS units," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4613-4619, Sept. 2018.
doi:10.1109/TAP.2018.2851372

10. Yi, H., S. W. Qu, and C. H. Chan, "Low-cost two-layer terahertz transmitarray," Electron. Lett., Vol. 53, No. 12, 789-791, Jun. 2017.
doi:10.1049/el.2017.1024

11. Wu, G., S. Qu, and S. Yang, "Low-profile transmitarray antenna with cassegrain reflectarray feed," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3079-3088, May 2019.
doi:10.1109/TAP.2019.2899029

12. Liu, X., L. Peng, Y. F. Liu, et al. "Ultra-broadband all dielectric transmitarray designing based on genetic algorithm optimization and 3D print technology," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 2003-2012, 2020.
doi:10.1109/TAP.2020.3026922

13. Abdelrahman, A., H. A. Z. Elsherbeni, and F. Yang, "High gain and broad-band transmitarray antenna using triple-layer spiral dipole elements," IEEE Antennas Wireless Propag., Vol. 13, 1288-1291, Jul. 2014.

14. Ryan, C. G. M., M. R. Chaharmir, J. Shaker, et al. "A wideband transmitarray using dual-resonant double square rings," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1486-1493, May 2010.
doi:10.1109/TAP.2010.2044356

15. Gao, S. S., S Sun, J. L. Li, and T. Yan, "Compact dual-mode dual-band bandpass filter with inside-outside-reversed dual-ring topology," Electron. Lett., Vol. 53, No. 9, 624-626, Apr. 2017.
doi:10.1049/el.2017.0580

16. Abdelrahman, A. H., A. Z. Elsherbeni, and F. Yang, "Transmitarray antenna design using cross slot elements with no dielectric substrate," IEEE Antennas Wireless Propag. Lett., Vol. 13, 177-180, 2014.
doi:10.1109/LAWP.2014.2298851

17. Tian, C., Y. Jiao, and G. Zhao, "Circularly polarized transmitarray antenna using low-profile dual-linearly polarized elements," IEEE Antennas Wireless Propag. Lett., Vol. 16, 465-468, 2017.
doi:10.1109/LAWP.2016.2583486

18. Gao, S. S. and S. Sun, "Synthesis of wideband parallel-coupled line bandpass filters with non-equiripple responses," IEEE Microw. Wireless Components Lett., Vol. 24, No. 9, 587-589, Sept. 2014.
doi:10.1109/LMWC.2014.2332065

19. Cai, Y., K. Li, S. Gao, et al. "Dual-band circularly polarized transmitarray with single linearly polarized feed," IEEE Trans. Antennas Propag., Vol. 68, No. 6, 5015-5020, Jun. 2020.
doi:10.1109/TAP.2019.2963594