Vol. 171
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-08-16
Analytical Kirchhoff Solutions (AKS) and Numerical Kirchhoff Approach (NKA) for First-Principle Calculations of Coherent Waves and Incoherent Waves at P Band and L Band in Signals of Opportunity (SoOp )
By
Progress In Electromagnetics Research, Vol. 171, 35-73, 2021
Abstract
In this paper, we derived Analytical Kirchhoff Solutions (AKS) for bistatic scattering near the specular directions at P band and L band for applications in Signals of Opportunity (SoOp). The land surface profiles are divided into three scales: microwave roughness f1, fine scale topography f2, and coarse scale 30-meter DEM f3. The microwave roughness and the fine scale topography are treated as random rough surfaces, while the coarse scale topography from DEM data are treated as deterministic planar patches. The salient features of the AKS model are (i) analytical expressions are obtained for both coherent waves and incoherent waves, (ii) Monte Carlo simulations are not required making the AKS computationally efficient, (iii) the analytical solutions are expressed in terms of the spectrum, so that the dividing line between microwave roughness and fine scale topography is not required, and the rough surface spectrum derived from lidar elevation measurements can be incorporated directly. The results of the three approaches, AKS, the Numerical Kirchhoff Approach (NKA) and the Fine Scale Partial Coherent Patch (FPCP) model, are indistinguishable for both the coherent waves and the incoherent waves. The agreements validate the AKS and FPCP approaches as NKA is a brute force accurate method based on Kirchhoff integral using 2 cm discretization and high-performance computers. Results show that the f2 profiles of fine scale topography have significant effects. The results of three Kirchhoff approaches fall in-between the results of the two versions of Geometric Optics (GO) approximations to the Kirchhoff integral [1, 2]. The two GO versions are with and without attenuation due to microwave roughness. The GO with microwave attenuation is also known as the ``Improved Geometric Optics Model (IGOM)''. Numerical results of coherent waves and incoherent waves are illustrated for remote sensing of snow and soil moisture at P band and L band. For P band, the histograms of the phase are shown. Results of the coherent waves are dependent on the sizes of the area as well as topographical elevations and slopes. AKS results are used to illustrate the coherent waves at P band on area sizes up to 1.5 km using 30-meter DEM topography elevations and derived slopes at Sanford, Brazos Peak, and Lobato Tank, Colorado, USA. For L band, the AKS results of Cross-Track are in good agreement with CYGNSS data over San Luis Valley, USA. In comparing CPU, it takes merely 25 seconds on a single CPU core for AKS to compute for a 15 km by 15 km DDM pixel which has 250000 DEM 30-meter patches. The CPU for AKS is slightly more than the 20 seconds required for GO.
Citation
Bowen Ren, Jiyue Zhu, Leung Tsang, and Haokui Xu, "Analytical Kirchhoff Solutions (AKS) and Numerical Kirchhoff Approach (NKA) for First-Principle Calculations of Coherent Waves and Incoherent Waves at P Band and L Band in Signals of Opportunity (SoOp )," Progress In Electromagnetics Research, Vol. 171, 35-73, 2021.
doi:10.2528/PIER21050607
References

1. Al-Khaldi, M. M., J. T. Johnson, A. J. O'Brien, A. Balenzano, and F. Mattia, "Time-series retrieval of soil moisture using CYGNSS," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 7, 4322-4331, 2019.
doi:10.1109/TGRS.2018.2890646

2. Campbell, J. D., A. Melebari, and M. Moghaddam, "Modeling the effects of topography on delay-Doppler maps," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, 1740-1751, 2020.
doi:10.1109/JSTARS.2020.2981570

3. Unwin, M., P. Jales, J. Tye, C. Gommenginger, G. Foti, and J. Rosello, "Spaceborne GNSS-reflectometry on TechDemoSat-1: Early mission operations and exploitation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 10, 4525-4539, 2016.
doi:10.1109/JSTARS.2016.2603846

4. Ruf, C., A. Lyons, M. Unwin, J. Dickinson, R. Rose, D. Rose, and M. Vincent, "CYGNSS: Enabling the future of hurricane prediction [Remote Sensing Satellites," IEEE Geoscience and Remote Sensing Magazine, Vol. 1, No. 2, 52-67, 2013.
doi:10.1109/MGRS.2013.2260911

5. Clarizia, M. P. and C. S. Ruf, "Wind speed retrieval algorithm for the cyclone global navigation satellite system (CYGNSS) mission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 8, 4419-4432, 2016.
doi:10.1109/TGRS.2016.2541343

6. Li, W., E. Cardellach, F. Fabra, A. Rius, S. Ribó, and M. Martín-Neira, "First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals," Geophysical Research Letters, Vol. 44, No. 16, 8369-8376, 2017.
doi:10.1002/2017GL074513

7. Nghiem, S. V., C. Zuffada, R. Shah, C. Chew, S. T. Lowe, A. J. Mannucci, E. Cardellach, G. R. Brakenridge, G. Geller, and A. Rosenqvist, "Wetland monitoring with global navigation satellite system reflectometry: Wetland monitoring with GNSS-R," Earth and Space Science, Vol. 4, No. 1, 16-39, Hoboken, N.J., 2017.
doi:10.1002/2016EA000194

8. Kim, H. and V. Lakshmi, "Use of cyclone global navigation satellite system (CYGNSS) observations for estimation of soil moisture," Geophysical Research Letters, Vol. 45, No. 16, 8272-8282, 2018.
doi:10.1029/2018GL078923

9. Chew, C. C. and E. E. Small, "Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture," Geophysical Research Letters, Vol. 45, No. 9, 4049-4057, 2018.
doi:10.1029/2018GL077905

10. Clarizia, M. P., N. Pierdicca, F. Costantini, and N. Floury, "Analysis of CYGNSS data for soil moisture retrieval," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 12, No. 7, 2227-2235, 2019.
doi:10.1109/JSTARS.2019.2895510

11. Shah, R., X. Xu, S. Yueh, C. S. Chae, K. Elder, B. Starr, and Y. Kim, "Remote sensing of snow water equivalent using P-band coherent reflection," IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 3, 309-313, 2017.
doi:10.1109/LGRS.2016.2636664

12. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves Advanced Topics, Wiley series in remote sensing, Wiley, 2001.
doi:10.1002/0471224278

13. Zavorotny, V. and A. Voronovich, "Scattering of GPS signals from the ocean with wind remote sensing application," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, 951-964, 2000.
doi:10.1109/36.841977

14. Thompson, D., T. Elfouhaily, and J. Garrison, "An improved geometrical optics model for bistatic GPS scattering from the ocean surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 12, 2810-2821, Dec. 2005.
doi:10.1109/TGRS.2005.857895

15. Campbell, J. D., et al. "Intercomparison of models for CYGNSS delay-Doppler maps at a validation site in the San Luis Valley of Colorado," IGARSS 2021, Brussels, Belgium, Jul. 11-16, 2021.

16. Carreno-Luengo, H., J. A. Crespo, R. Akbar, A. Bringer, A. Warnock, M. Morris, and C. Ruf, "The CYGNSS mission: On-going science team investigations," Remote Sensing, Vol. 13, No. 9, 1814, Basel, Switzerland, 2021.
doi:10.3390/rs13091814

17. Bringer, A., J. Johnson, C. Toth, C. Ruf, and M. Moghaddam, "Studies of terrain surface roughness and its effects on GNSS-R systems using airborne LIDAR measurements," IGARSS 2021, Brussels, Belgium, Jul. 11-16, 2021.

18. Dente, L., L. Guerriero, D. Comite, and N. Pierdicca, "Space-borne GNSS-R signal over a complex topography: Modeling and validation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, 1218-1233, 2020.
doi:10.1109/JSTARS.2020.2975187

19. Gu, W., H. Xu, and L. Tsang, "A numerical Kirchhoff simulator for GNSS-R land applications," Progress In Electromagnetics Research, Vol. 164, 119-133, 2019.
doi:10.2528/PIER18121803

20. Zhu, J., L. Tsang, and H. Xu, "A physical patch model for GNSS-R land applications," Progress In Electromagnetics Research, Vol. 165, 93-105, 2019.
doi:10.2528/PIER19031003

21. Xu, H., J. Zhu, L. Tsang, and S. B. Kim, "A fine scale partially coherent patch model including topographical effects for GNSS-R DDM simulations," Progress In Electromagnetics Research, Vol. 170, 97-128, 2021.
doi:10.2528/PIER20121201

22. Yueh, S., R. Shah, X. Xu, K. Elder, and B. Starr, "Experimental demonstration of soil moisture remote sensing using P-band satellite signals of opportunity," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 2, 207-211, 2020.
doi:10.1109/LGRS.2019.2918764

23. Huang, S., L. Tsang, E. G. Njoku, and K. S. Chan, "Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-band for SMAP applications based on numerical solutions of Maxwell equations in three-dimensional simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6, 2557-2568, 2010.
doi:10.1109/TGRS.2010.2040748

24. Al-Khaldi, M. M., J. T. Johnson, S. Gleason, E. Loria, A. J. O'Brien, and Y. Yi, "An algorithm for detecting coherence in cyclone global navigation satellite system mission Level-1 delay-Doppler maps," IEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 5, 4454-4463, 2021.
doi:10.1109/TGRS.2020.3009784

25. Jia, Y., S. Jin, H. Chen, Q. Yan, P. Savi, Y. Jin, and Y. Yuan, "Temporal-spatial soil moisture estimation from CYGNSS using machine learning regression with a preclassification approach," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, 4879-4893, 2021.
doi:10.1109/JSTARS.2021.3076470

26. Munoz-Martin, J. F., L. F. Capon, J. A. Ruiz-de-Azua, and A. Camps, "The flexible microwave Payload-2: A SDR-based GNSS-reflectometer and L-band radiometer for CubeSats," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, 1298-1311, 2020.
doi:10.1109/JSTARS.2020.2977959

27. Perez-Portero, A., J. F. Munoz-Martin, H. Park, and A. Camps, "Airborne GNSS-R: A key enabling technology for environmental monitoring," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1, 2021.

28. Yueh, S. H., R. Shah, X. Xu, B. Stiles, and X. Bosch-Lluis, "A satellite synthetic aperture radar concept using P-band signals of opportunity," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, 2796-2816, 2021.
doi:10.1109/JSTARS.2021.3059242