Vol. 99
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-07-09
A Low Cost Coplanar Capacitively Coupled Probe Fed Stacked Patch Antenna for GNSS Applications
By
Progress In Electromagnetics Research Letters, Vol. 99, 11-18, 2021
Abstract
This letter presents a low-cost dual-band circularly polarized microstrip antenna for GNSS applications. The dual-band operation is achieved by stacking two metallic patches on a conventional FR4 substrate. The designed antenna can cover GPS L1 band, BeiDou B1 band, Galileo E1, E5b bands, and GLONASS G1, G3 bands, through a bandwidth of 1.118 GHz-1.215 GHz in lower L band and a bandwidth of 1.55 GHz-1.61 GHz in the upper L band. In order to achieve a wide axial ratio bandwidth, a dual-feed mechanism utilizing a capacitively coupled probe feeding scheme is incorporated. The overall size of the proposed antenna is 100 mm by 100 mm. The measured results indicate an excellent correlation with simulations.
Citation
Muhammad Awais, Ahmad Bilal, and Shuaib Salamat, "A Low Cost Coplanar Capacitively Coupled Probe Fed Stacked Patch Antenna for GNSS Applications," Progress In Electromagnetics Research Letters, Vol. 99, 11-18, 2021.
doi:10.2528/PIERL21050306
References

1. Hegarty, C. J. and E. Chatre, "Evolution of the Global Navigation Satellite System (GNSS)," Proceedings of the IEEE, Vol. 96, No. 12, 1902-1917, Dec. 2008.
doi:10.1109/JPROC.2008.2006090

2. Zhou, Y., C. Chen, and J. L. Volakis, "Dual band proximity-fed stacked patch antenna for tri-band GPS applications," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 220-223, Jan. 2007.
doi:10.1109/TAP.2006.888476

3. Wang, Z., S. Fang, S. Fu, and S. Lu, "Dual-band probe-fed stacked patch antenna for GNSS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 100-103, 2009.
doi:10.1109/LAWP.2008.2012355

4. Li, D., P. Guo, Q. Dai, and Y. Fu, "Broadband capacitively coupled stacked patch antenna for GNSS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 701-704, 2012.

5. Caizzone, S., "Miniaturized E5a/E1 antenna array for robust GNSS navigation," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 485-488, 2017.
doi:10.1109/LAWP.2016.2585353

6. Zhong, Z., et al. "A compact dual-band circularly polarized antenna with wide axial-ratio beamwidth for vehicle GPS satellite navigation application," IEEE Transactions on Vehicular Technology, Vol. 68, No. 9, 8683-8692, Sept. 2019.
doi:10.1109/TVT.2019.2920520

7. Sun, C., Z. Wu, and B. Bai, "A novel compact wideband patch antenna for GNSS application," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7334-7339, Dec. 2017.
doi:10.1109/TAP.2017.2761987

8. Falade, O. P., M. U. Rehman, Y. Gao, X. Chen, and C. G. Parini, "Single feed stacked patch circular polarized antenna for triple band GPS receivers," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4479-4484, Oct. 2012.
doi:10.1109/TAP.2012.2207354

9. Agarwal, K. and A. Alphones, "Triple-band compact circularly polarised stacked microstrip antenna over reactive impedance meta-surface for GPS applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 13, 1057-1065, 2014.
doi:10.1049/iet-map.2013.0586

10. Liu, Y., et al. "Multiband antenna for satellite navigation system," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1329-1332, 2015.

11. Pham, N., J.-Y. Chung, and B. Lee, "A proximity-fed antenna for dual-band GPS receiver," Progress In Electromagnetics Research, Vol. 61, 1-8, 2016.