Vol. 99
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-08-21
Topological Optimization Method for Ship Detection in SAR Images
By
Progress In Electromagnetics Research Letters, Vol. 99, 153-157, 2021
Abstract
The aim of this study is to provide a topological optimization method for ship detection in synthetic aperture radar (SAR) imagery. The method consists of three steps: pre-processing, sparse representation and classification. For the first step, the variational model is used for SAR image filtering. For the second step, the curvature of the surface manifold is constructed for sparse representation of target. For the third step, the topological derivative method is adopted to locate the target. Experiments show that the proposed method is effective in reducing false alarms, and obtains a satisfactory detection performance.
Citation
Dianqi Pei, and Meng Yang, "Topological Optimization Method for Ship Detection in SAR Images," Progress In Electromagnetics Research Letters, Vol. 99, 153-157, 2021.
doi:10.2528/PIERL21042903
References

1. Chen, S., X. Cui, X. Wang, and S. Xiao, "Speckle-free SAR image ship detection," IEEE Trans. Image Process., Vol. 31, 5969-5983, 2021.
doi:10.1109/TIP.2021.3089936

2. Pu, W., "Deep SAR imaging and motion compensation," IEEE Trans. Image Process., Vol. 30, 2232-2247, 2021.
doi:10.1109/TIP.2021.3051484

3. Pu, W., "Shuffle GAN with autoencoder: A deep learning approach to separate moving and stationary targets in SAR imagery," IEEE Trans. Neural Networks and Learning Systems (Early Access), No. 1, 2021.

4. Lang, H., Y. Xi, and X. Zhang, "Ship detection in high-resolution SAR images by clustering spatially enhanced pixel descriptor," IEEE Trans. Geosci. Remote Sens., Vol. 57, No. 8, 5407-5423, 2019.
doi:10.1109/TGRS.2019.2899337

5. Wang, X., Y. He, G. Li, and A. Plaza, "Adaptive superpixel segmentation of marine SAR images by aggregating Fisher vectors," IEEE J. Sel. Topics Appl. Earth Observ, Vol. 14, 2058-2069, 2021.
doi:10.1109/JSTARS.2021.3051301

6. Cui, X., Y. Su, and S. Chen, "A saliency detector for polarimetric SAR ship detection using similarity test," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 12, No. 9, 3423-3433, 2019.
doi:10.1109/JSTARS.2019.2925833

7. Liu, T., Z. Yang, A. Marino, G. Gao, and J. Yang, "Robust CFAR detector based on truncated statistics for polarimetric synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 58, No. 9, 6731-6747, 2020.
doi:10.1109/TGRS.2020.2979252

8. Liu, T., Z. Yang, J. Yang, and G. Gao, "CFAR ship detection methods using compact polarimetric SAR in a k-wishart distribution," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 12, No. 10, 3737-3745, 2019.
doi:10.1109/JSTARS.2019.2923009

9. Zefreh, R., M. Taban, M. Naghsh, and S. Gazor, "Robust CFAR detector based on censored harmonic averaging in heterogeneous clutter," IEEE Trans. Aeronaut. Navig. Electron., Vol. 57, No. 3, 1956-1963, 2021.
doi:10.1109/TAES.2020.3046050

10. Xu, Z., C. Fan, S. Cheng, J. Wang, and X. Huang, "A distribution independent ship detector for PolSAR images," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 14, 3774-3786, 2021.
doi:10.1109/JSTARS.2021.3068843

11. Larrabide, I., R. Feijoo, A. Novotny, and E. Taroco, "Topological derivative: A tool for image processing," Comput. Struct., Vol. 86, No. 13, 1386-1403, 2008.
doi:10.1016/j.compstruc.2007.05.004

12. Gao, G., Characterization of SAR Clutter and Its Applications to Land and Ocean Observations, Springer, Singapore, 2019.
doi:10.1007/978-981-13-1020-1