Vol. 98
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-05-29
A Low-Loss Dual-Band Negative Group Delay Circuit with Flexible Design
By
Progress In Electromagnetics Research Letters, Vol. 98, 33-40, 2021
Abstract
A low-loss dual-band negative group delay circuit (NGDC) with a flexible design is proposed. The proposed NGDC consists of a transmission line coupled asymmetrically with two step-impedance open-loop resonators. The negative group delay (NGD) times and center frequencies of the lower and upper bands can be tuned independently. To verify the design concept, two dual-band NGDC prototypes I and II are fabricated and measured. The measured NGD times of prototype I are -4.9 ns and -4.8 ns at the center frequencies of 1.949 GHz and 2.054 GHz, respectively. The insertion loss is lower than 2.7 dB and the return loss larger than 11.2 dB in both NGD bands. For prototype II, the NGD times at 1.949 GHz and 2.086 GHz are -4.7 ns and -3.3 ns, respectively. The measured insertion loss is better than 2.4 dB with the return loss larger than 11.9 dB.
Citation
Yuwei Meng, Zhongbao Wang, Yu Bai, Shao-Jun Fang, and Hongmei Liu, "A Low-Loss Dual-Band Negative Group Delay Circuit with Flexible Design," Progress In Electromagnetics Research Letters, Vol. 98, 33-40, 2021.
doi:10.2528/PIERL21041701
References

1. Ravelo, B., S. Lallechere, A. Thakur, A. Saini, and P. Thskuret, "Theory and circuit modeling of baseband and modulated signal delay compensations with low- and band-pass NGD effects," AEU Int. J. Electron. Commun., Vol. 70, No. 9, 1122-1127, Sept. 2016.
doi:10.1016/j.aeue.2016.05.009

2. Eudes, T. and B. Ravelo, "Cancellation of delays in the high-rate interconnects with UWB NGD active cells," Appl. Phys. Res., Vol. 3, No. 2, 81-88, Nov. 2011.

3. Ahn, K., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 9, 2139-2147, Sept. 2009.
doi:10.1109/TMTT.2009.2027082

4. Ravelo, B., "High-pass negative group delay RC-network impedance," IEEE Trans. Circuits Syst. II — Express Briefs, Vol. 64, No. 9, 1052-1056, Sept. 2017.
doi:10.1109/TCSII.2016.2636179

5. Shao, T., Z. Wang, S. Fang, H. Liu, and S. Fu, "A compact transmission-line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, 22836-22843, Nov. 2017.

6. Xiao, J. K., Q. F. Wang, and J. G. Ma, "Matched NGD circuit with resistor-connected coupled lines," Electron. Lett., Vol. 55, No. 16, 903-905, Aug. 2019.
doi:10.1049/el.2019.1277

7. Chaudhary, G. and Y. Jeong, "A design of compact wideband negative group delay network using cross coupling," Microw. Opt. Technol. Lett., Vol. 56, No. 11, 2612-2616, Nov. 2014.

8. Wu, Y., H. Wang, Z. Zhuang, Y. Liu, Q. Xue, and A. A. Kishk, "A novel arbitrary terminated unequal coupler with bandwidth-enhanced positive and negative group delay characteristics," IEEE Trans. Microwave Theory Tech., Vol. 66, No. 5, 2170-2184, May 2018.
doi:10.1109/TMTT.2018.2809516

9. Zhang, T., T. Yang, and P. Chi, "Novel reconfigurable negative group delay circuits with independent group delay and transmission loss/gain control," IEEE Trans. Microwave Theory Tech., Vol. 68, No. 4, 1293-1303, Apr. 2020.
doi:10.1109/TMTT.2019.2955704

10. Ravelo, B., F. Wan, N. Li, Z. Xu, P. Thakur, and A. Thaku, "Diakoptics modelling applied to flying bird-shape NGD microstrip circuit," IEEE Trans. Circuits Syst. II — Express Briefs, Vol. 68, No. 2, 637-641, Feb. 2021.
doi:10.1109/TCSII.2020.3012959

11. Wan, F., L. Wu, B. Ravelo, and J. Ge, "Analysis of interconnect line coupled with a radial-stub terminated negative group delay circuit," IEEE Trans. Electromagn. Compat., Vol. 62, No. 5, 1813-1821, Oct. 2020.
doi:10.1109/TEMC.2019.2936266

12. Wan, F., N. Li, B. Ravelo, and J. Ge, "O=O shape low-loss negative group delay microstrip circuit," IEEE Trans. Circuits Syst. II — Express Briefs, Vol. 67, No. 10, 1795-1799, Oct. 2020.
doi:10.1109/TCSII.2019.2955109

13. Ravelo, B., N. Li, F. Wan, and J. Feng, "Design, modeling and synthesis of negative group delay IL-shape topology," IEEE Access, Vol. 7, 153900-153909, Oct. 2019.

14. Choi, H., Y. Jeong, J. Lim, S. Eom, and Y. Jung, "A novel design for a dual-band negative group delay circuit," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 1, 19-21, Jan. 2011.
doi:10.1109/LMWC.2010.2089675

15. Ravelo, B. and S. Blasi, "An FET-based microwave active circuit with dual-band negative group delay," J. Microw. Optoelectron. Electromagn. Appl., Vol. 10, No. 2, 355-366, Dec. 2011.
doi:10.1590/S2179-10742011000200006

16. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radioengineering, Vol. 27, No. 4, 1070-1076, Dec. 2018.
doi:10.13164/re.2018.1070

17. Meng, Y., Z. Wang, S. Fang, T. Shao, H. Liu, and Z. Chen, "Dual-band negative group delay microwave circuit with low signal attenuation and arbitrary frequency ratio," IEEE Access, Vol. 8, 49908-49919, Mar. 2020.
doi:10.1109/ACCESS.2020.2978545

18. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 8, 521-523, Aug. 2014.
doi:10.1109/LMWC.2014.2322445

19. Taher, H. and R. Farrell, "Dual wide-band miniaturized negative group delay circuit using open circuit stubs," Microwave Opt. Technol. Lett., Vol. 60, No. 2, 428-432, Feb. 2018.
doi:10.1002/mop.30979

20. Zhou, X., B. Li, B. Ravelo, X. Hu, et al. "Analytical design of dual-band negative group delay circuit with multi-coupled lines," IEEE Access, Vol. 8, 72749-72756, Apr. 2020.
doi:10.1109/ACCESS.2020.2988096