Vol. 98
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-05-19
Optimization of the Wheeler Cap Technique for Efficiency Measurement of RFID Antennas Matched to Complex Loads
By
Progress In Electromagnetics Research Letters, Vol. 98, 25-31, 2021
Abstract
This paper proposes an improved mathematical formulation of Johnston's approach to measure the radiation efficiency of an antenna, based on the Wheeler Cap (WC) technique. The proposed modifications allow the measurement of the radiation efficiency of small antennas matched to complex loads implemented on Radio Frequency IDentification (RFID) tags. The studied structure is a low-cost, silver-printed, differentially-fed RFID dipole antenna. The antenna is printed on a flexible PET (polyethylene terephthalate) paper that is conformable on various objects. Link budget measurements validate the accuracy of the formulation, which can be applied to any dipole antenna matched to an RFID chip with a complex input impedance.
Citation
Nadeen Rishani, Jean-Marc Laheurte, Stephane Protat, and Raed Shubair, "Optimization of the Wheeler Cap Technique for Efficiency Measurement of RFID Antennas Matched to Complex Loads," Progress In Electromagnetics Research Letters, Vol. 98, 25-31, 2021.
doi:10.2528/PIERL21040207
References

1. Sharif, A., J. Ouyang, Y. Yan, A. Raza, M. A. Imran, and Q. H. Abbasi, "Low-cost inkjet-printed RFID tag antenna design for remote healthcare applications," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 3, No. 4, 261-268, Dec. 2019.
doi:10.1109/JERM.2019.2924823

2. Turalchuk, P., I. Munina, M. Derkach, O. Vendik, and I. Vendik, "Electrically small loop antennas for RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1786-1789, 2015.
doi:10.1109/LAWP.2015.2423854

3. Mobashsher, A. T., M. T. Islam, and N. Misran, "A novel high-gain dual-band antenna for RFID reader applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 653-656, 2010.
doi:10.1109/LAWP.2010.2055818

4. Koski, E., T. Bjorninen, L. Ukkonen, and L. Sydanheimo, "Radiation efficiency measurement method for passive UHF RFID dipole tag antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4026-4035, Aug. 2013.
doi:10.1109/TAP.2013.2261448

5. Zhang, J. and Y. Long, "A novel metal-mountable electrically small antenna for RFID tag applications with practical guidelines for the antenna design," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5820-5829, Nov. 2014.
doi:10.1109/TAP.2014.2354412

6. Chen, W., Z. Niu, M. Li, Z. Li, Q. Xu, and C. Gu, "Design and evaluation of planar bifilar helical antennas for radio frequency identification tags," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2642-2646, Dec. 2019.
doi:10.1109/LAWP.2019.2947168

7. Galehdar, A., D. V. Thiel, and S. G. O’Keefe, "Antenna efficiency calculations for electrically small, RFID antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 156-159, 2007.
doi:10.1109/LAWP.2007.891960

8. Wheeler, H. A., "The radiansphere around a small antenna," Proceedings of the IRE, Vol. 47, No. 8, 1325-1331, 1959.
doi:10.1109/JRPROC.1959.287198

9. McKinzie, W. E., "A modified Wheeler Cap method for measuring antenna efficiency," IEEE Antennas and Propagation Society International Symposium, 542-545, 1997.

10. Newman, E. H., E. Bohley, and C. H. Walter, "Two methods for the measurement of antenna efficiency," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4, 457-461, 1975.
doi:10.1109/TAP.1975.1141114

11. Rogers, R. L., D. P. Buhl, H. Choo, and H. Ling, "Size reduction of a folded conical helix antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 34-37, 2002.
doi:10.1109/APS.2002.1016920

12. Cho, C., J. Kang, and H. Choo, "Improved Wheeler Cap method based on an equivalent high-order circuit model," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 274-281, Jan. 2014.
doi:10.1109/TAP.2013.2287277

13. Schantz, H. G., "Radiation efficiency of UWB antennas," IEEE Conference on Ultra Wideband Systems and Technologies, 351-355, 2002.

14. Johnston, R. H. and J. G. McRory, "An improved small antenna radiation efficiecny measurement method," IEEE Antennas and Propagation Magazine, Vol. 40, No. 5, 1998.
doi:10.1109/74.735964

15. Rishani, N., F. Gourari, J. Dubouil, J. M. Laheurte, R. Shubair, and S. Abou Chakra, "Comparison of UHF RFID loop matching antennas based on various substrate-metal material combinations," IEEE Middle East and North Africa Communications Conference, 2018.

16. Mitsubishi paper mills limited., , Mitsubishi paper mills silver nano paticle ink [Online]., ‘Mitsubishi’, available from: https://www.mpm.co.jp/electronic/eng/silver-nano/index.html..

17. Impinj., , Monza 5 Tag Chip datasheet [Online], available from: https://support.impinj.com/hc/en-us/articles/202756948-Monza-5-Tag-Chip-Datasheet..

18. Zhang, J., S. Pivnenko, and O. Breinbjerg, "A modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas," Proceedings of the Fourth European Conference on Antennas and Propagation, 2010.

19. Sarrazin, F., S. Pflaum, and C. Delaveaud, "Radiation efficiency measurement of a balanced miniature IFA-inspired circular antenna using a differential Wheeler Cap setup," International Workshop on Antenna Technology (iWAT), 64-67, 2016.

20. Vu, T. M., A. Diallo, C. Luxey, and G. Kossiavas, "Optimization of the size and the shape of a wheeler cap for mobile phone-antenna efficiency measurements," The Second European Conference on Antennas and Propagation, EuCAP, 1-6, 2007.