Vol. 98
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-06-02
Synthesis of in-Line Fully Canonical Response Filters with Frequency-Variant Couplings
By
Progress In Electromagnetics Research Letters, Vol. 98, 49-54, 2021
Abstract
A direct synthesis approach is presented to realize in-line topology filters with adjacent frequency-variant couplings implementing a transmission response with the same number of finite transmission zeros as poles. The proposed method starts with an N-order fully canonical filter response definition. A non-resonant node (NRN) is incorporated into the transversal network to make room for an extra coupling, and as a consequence of the extended similarity transformation applied, the NRN is transformed into a resonant node. The result is a network with N poles and N transmission zeros implemented with N+1 resonant nodes and N FVC, being able to describe a fully canonical response with an inline network without cross couplings.
Citation
Angel Triano, and Pedro de Paco, "Synthesis of in-Line Fully Canonical Response Filters with Frequency-Variant Couplings," Progress In Electromagnetics Research Letters, Vol. 98, 49-54, 2021.
doi:10.2528/PIERL21031303
References

1. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator filters with frequency-dependent couplings: coupling matrix synthesis," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 312-314, 2012.
doi:10.1109/LMWC.2012.2197386

2. Tamiazzo, S. and G. Macchiarella, "Synthesis of cross-coupled filters with frequency-dependent couplings," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 3, 775-782, 2017.
doi:10.1109/TMTT.2016.2633258

3. Zhao, P. and K. Wu, "Cascading fundamental building blocks with frequency-dependent couplings in microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1432-1440, 2019.
doi:10.1109/TMTT.2019.2895532

4. Zhu, F., W. Hong, J. Chen, and K. Wu, "Quarter-wavelength stepped-impedance resonator filter with mixed electric and magnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 2, 90-92, 2014.
doi:10.1109/LMWC.2013.2290225

5. Zhang, S., L. Zhu, and R. Weerasekera, "Synthesis of inline mixed coupled quasi-elliptic bandpass filters based on λ/4 resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 10, 3487-3493, 2015.
doi:10.1109/TMTT.2015.2467380

6. Wang, H. and Q. Chu, "An inline coaxial quasi-elliptic filter with controllable mixed electric and magnetic coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 3, 667-673, 2009.
doi:10.1109/TMTT.2009.2013290

7. He, Y., G. Wang, L. Sun, L. Wang, R. Zhang, and G. Rushingabigwi, "Direct matrix synthesis for in-line filters with transmission zeros generated by frequency-variant couplings," 2017 IEEE MTT-S International Microwave Symposium (IMS), 356-359, 2017.
doi:10.1109/MWSYM.2017.8059119

8. He, Y., G. Macchiarella, G. Wang, W. Wu, L. Sun, L. Wang, and R. Zhang, "A direct matrix synthesis for in-line filters with transmission zeros generated by frequency-variant couplings," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1780-1789, 2018.
doi:10.1109/TMTT.2018.2791940

9. Zhang, Y.-L., "Direct matrix synthesis for in-line diplexers with transmission zeros generated by Frequency Variant Couplings," Progress In Electromagnetics Research M, Vol. 78, 45-52, 2018.
doi:10.2528/PIERL18062502

10. Zhang, Y.-L., "Improved matrix synthesis for inline filters with transmission zeros generated by FVC," Progress In Electromagnetics Research M, Vol. 76, 9-17, 2018.
doi:10.2528/PIERM18101502

11. Li, G., "Coupling matrix optimization synthesis for filters with constant and Frequency-Variant Couplings," Progress In Electromagnetics Research Letters, Vol. 82, 73-80, 2019.
doi:10.2528/PIERL19011103

12. He, Y., G. Macchiarella, Z. Ma, L. Sun, and N. Yoshikawa, "Advanced direct synthesis approach for high selectivity in-line topology filters comprising N − 1 adjacent Frequency-Variant Couplings," IEEE Access, Vol. 7, 41 659-41 668, 2019.
doi:10.1109/ACCESS.2019.2907531

13. Cameron, R., C. Kudsia, and R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, Wiley, 2018.
doi:10.1002/9781119292371

14. He, Y., G. Wang, X. Song, and L. Sun, "A coupling matrix and admittance function synthesis for mixed topology filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4444-4454, Dec. 2016.
doi:10.1109/TMTT.2016.2614666