1. Mumtaz, F., et al. "A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer," IEEE Sensors Journal, Vol. 20, No. 13, 7074-7081, 2020.
doi:10.1109/JSEN.2020.2978533
2. Li, X., L. V. Nguyen, M. Becker, H. Ebendorff-Heidepriem, D. Pham, and S. Warren-Smith, "Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, No. 4, 1-7, 2019.
3. Yu , J., S. Xu, Y. Jiang, H. Chen, and W. Feng, "Multi-parameter sensor based on the fiber Bragg grating combined with triangular-lattice four-core fiber," Optik, Vol. 208, 164094, 2020.
doi:10.1016/j.ijleo.2019.164094
4. Zhang, W., Y. Liu, T. Zhang, D. Yang, Y. Wang, and D. Yu, "Integrated fiber-optic Fabry-Perot interferometer sensor for simultaneous measurement of liquid refractive index and temperature," IEEE Sensors Journal, Vol. 19, No. 13, 5007-5013, 2019.
doi:10.1109/JSEN.2019.2903583
5. Cao, X., D. Tian, Y. Liu, L. Zhang, and T. Wang, "Sensing characteristics of helical long-period gratings written in the double-clad fiber by CO2 laser," IEEE Sensors Journal, Vol. 18, No. 18, 7481-7485, 2018.
doi:10.1109/JSEN.2018.2855038
6. Li, Z., Y.-X. Zhang, W.-G. Zhang, L.-X. Kong, and T.-Y. Yan, "Micro-cap on 2-core-fiber facet hybrid interferometer for dual-parameter sensing," Journal of Lightwave Technology, Vol. 37, No. 24, 6114-6120, 2019.
doi:10.1109/JLT.2019.2946619
7. Rao, Y.-J., Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," Journal of Lightwave Technology, Vol. 21, No. 5, 1320, 2003.
doi:10.1109/JLT.2003.810561
8. Zheng, Z.-M., Y.-S. Yu, X.-Y. Zhang, Q. Guo, and H.-B. Sun, "Femtosecond laser inscribed small-period long-period fiber gratings with dual-parameter sensing," IEEE Sensors Journal, Vol. 18, No. 3, 1100-1103, 2017.
doi:10.1109/JSEN.2017.2761794
9. Tian, K., et al. "Simultaneous measurement of displacement and temperature based on two cascaded balloon-like bent fibre structures," Optical Fiber Technology, Vol. 58, 102277, 2020.
doi:10.1016/j.yofte.2020.102277
10. Yi, D., Z. Huo, Y. Geng, X. Li, and X. Hong, "PDMS-coated no-core fiber interferometer with enhanced sensitivity for temperature monitoring applications," Optical Fiber Technology, Vol. 57, 102185, 2020.
doi:10.1016/j.yofte.2020.102185
11. Gong, J., et al. "High sensitivity fiber temperature sensor based PDMS film on Mach-Zehnder interferometer," Optical Fiber Technology, Vol. 53, 102029, 2019.
doi:10.1016/j.yofte.2019.102029
12. Huang, B., et al. "In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement," IEEE Sensors Journal, Vol. 19, No. 14, 5632-5638, 2019.
doi:10.1109/JSEN.2019.2906243
13. Lei, X., Y. Feng, and X. Dong, "High-temperature sensor based on a special thin-diameter fiber," Optics Communications, Vol. 463, 125386, 2020.
doi:10.1016/j.optcom.2020.125386
14. Tong, R.-J., Y. Zhao, H.-K. Zheng, and F. Xia, "Simultaneous measurement of temperature and relative humidity by compact Mach-Zehnder interferometer and Fabry-Perot interferometer," Measurement, Vol. 155, 107499, 2020.
doi:10.1016/j.measurement.2020.107499
15. Wang, J., C. Bian, T. Gang, and M. Hu, "High-sensitive Mach-Zehnder interferometer for humidity measurements based on concatenating single-mode concave cone and core-offset," Optik, Vol. 208, 164465, 2020.
doi:10.1016/j.ijleo.2020.164465
16. Wang, Z., L. Huang, C. Liu, H. Wang, S. Sun, and D. Yang, "Sensitivity-enhanced fiber temperature sensor based on vernier effect and dual in-line Mach-Zehnder interferometers," IEEE Sensors Journal, Vol. 19, No. 18, 7983-7987, 2019.
doi:10.1109/JSEN.2019.2916891
17. Qi, K., Y. Zhang, J. Sun, G. J. O. Yi, and L. Technology, "All-fiber high temperature and refractive index sensor based on three microspheres array Michelson interferometer," Optics Laser Technology, Vol. 129, 106300, 2020.
doi:10.1016/j.optlastec.2020.106300
18. Sun, H., M. Shao, L. Han, J. Liang, R. Zhang, and H. Fu, "Large core-offset based in-fiber Michelson interferometer for humidity sensing," Optical Fiber Technology, Vol. 55, 102153, 2020.
doi:10.1016/j.yofte.2020.102153
19. Domınguez-Flores, C. E., et al. "Real-time temperature sensor based on in-fiber Fabry–Perot interferometer embedded in a resin," Journal of Lightwave Technology, Vol. 37, No. 4, 1084-2019, 2019.
doi:10.1109/JLT.2018.2886134
20. Lei, X. and X. Dong, "High-sensitivity Fabry-Perot interferometer high-temperature fiber sensor based on vernier effect," IEEE Sensors Journal, Vol. 20, No. 10, 5292-5297, 2020.
doi:10.1109/JSEN.2020.2970579
21. Liu, Y., et al. "Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature," IEEE Sensors Journal, Vol. 19, No. 23, 11236-11241, 2019.
doi:10.1109/JSEN.2019.2934738
22. Yang, D., et al. "Integrated optic-fiber sensor based on enclosed EFPI and structural phase-shift for discriminating measurement of temperature, pressure and RI," Optics Laser Technology, Vol. 126, 106112, 2020.
doi:10.1016/j.optlastec.2020.106112
23. Zhu, C., Y. Zhuang, B. Zhang, R. Muhammad, P. P. Wang, and J. Huang, "A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity," IEEE Photonics Technology Letters, Vol. 31, No. 1, 35-38, 2018.
doi:10.1109/LPT.2018.2881721
24. Cheng, H., S. Wu, Q. Wang, S. Wang, and P. Lu, "In-line hybrid fiber sensor for curvature and temperature measurement," IEEE Photonics Journal, Vol. 11, No. 6, 1-11, 2019.
doi:10.1109/JPHOT.2019.2944988
25. Xu, H., M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, "Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures," Optics Express, Vol. 22, No. 3, 3098-3104, 2014.
doi:10.1364/OE.22.003098
26. Liu, Y., S. Li, H. Chen, J. Li, W. Zhang, and M. Wang, "Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced photonic crystal fiber," Journal of Lightwave Technology, Vol. 38, No. 4, 919-928, 2019.
doi:10.1109/JLT.2019.2949067
27. Bai, Y., Y. Miao, H. Zhang, and J. Q. Yao, "Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2," Journal of Lightwave Technology, Vol. 38, No. 4, 840-845, 2020.
doi:10.1109/JLT.2019.2947644
28. Yin, J., et al., "Assembly-free-based fiber-optic micro-Michelson interferometer for high temperature sensing," IEEE Photonics Technology Letters, Vol. 28, No. 6, 625-628, 2015.
doi:10.1109/LPT.2015.2503276
29. Hernandez-Romano, I., D. Monzon-Hernandez, C. Moreno-Hernandez, D. Moreno-Hernandez, and J. Villatoro, "Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer," IEEE Photonics Technology Letters, Vol. 27, No. 24, 2591-2594, 2015.
doi:10.1109/LPT.2015.2478790
30. Li, J.-X., Z.-R. Tong, L. Jing, W.-H. Zhang, J. Qin, J.-W. J. O. C. Liu, and , "Fiber temperature and humidity sensor based on photonic crystal fiber coated with graphene oxide," Optics Communications, Vol. 467, 125707, 2020.
doi:10.1016/j.optcom.2020.125707
31. Sun, H., et al. "A hybrid fiber interferometer for simultaneous refractive index and temperature measurements based on Fabry-Perot/Michelson interference," IEEE Sensors Journal, Vol. 13, No. 5, 2039-2044, 2013.
doi:10.1109/JSEN.2013.2246862
32. Salunkhe, T. T., D. J. Lee, H. K. Lee, H. W. Choi, S. J. Park, and I. T. Kim, "Enhancing temperature sensitivity of the Fabry-P´erot interferometer sensor with optimization of the coating thickness of polystyrene," Sensors, Vol. 20, No. 3, 794, 2020.
doi:10.3390/s20030794
33. Liu, Y., et al. "Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure," Optics Communications, Vol. 443, 166-171, 2019.
doi:10.1016/j.optcom.2019.03.034
34. Zhao, Y., et al. "An integrated fiber michelson interferometer based on twin-core and side-hole fibers for multiparameter sensing," Journal of Lightwave Technology, Vol. 36, No. 4, 993-997, 2017.
doi:10.1109/JLT.2017.2753256