Vol. 97
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-04-08
Highly Sensitive Polymer Based Fabry-Perot Interferometer for Temperature Sensing
By
Progress In Electromagnetics Research Letters, Vol. 97, 87-94, 2021
Abstract
A highly sensitive temperature sensor based on a polymer cavity of a Fabry-Perot interferometer (FPI) is experimentally demonstrated. The interferometer gives ease in fabrication, and it can be formed by the induction of a thermos-sensitive polymer layer in between two single mode fibers (SMFs). The polymer is used as an FPI cavity for temperature sensing. Due to high thermal expansion coefficient (TEC) and thermos-optic coefficient (TOC) of polymer make the interferometer highly sensitive to ambient temperature. The maximum temperature sensitivity of 2.2209 nm/°C for the polymer FPI cavity of 40.61 µm in the ambient temperature range of 28°C to 34°C is obtained. The proposed sensor shows the advantages of high sensitivity, compactness, simple fabrication, and low cost. Thus, it may become a part of various practical applications in the field of environmental science and engineering sciences.
Citation
Lashari Ghulam Abbas, Farhan Mumtaz, Yutang Dai, Ai Zhou, Wenbin Hu, and Muhammad Aqueel Ashraf, "Highly Sensitive Polymer Based Fabry-Perot Interferometer for Temperature Sensing," Progress In Electromagnetics Research Letters, Vol. 97, 87-94, 2021.
doi:10.2528/PIERL21030702
References

1. Mumtaz, F., et al. "A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer," IEEE Sensors Journal, Vol. 20, No. 13, 7074-7081, 2020.
doi:10.1109/JSEN.2020.2978533

2. Li, X., L. V. Nguyen, M. Becker, H. Ebendorff-Heidepriem, D. Pham, and S. Warren-Smith, "Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, No. 4, 1-7, 2019.

3. Yu , J., S. Xu, Y. Jiang, H. Chen, and W. Feng, "Multi-parameter sensor based on the fiber Bragg grating combined with triangular-lattice four-core fiber," Optik, Vol. 208, 164094, 2020.
doi:10.1016/j.ijleo.2019.164094

4. Zhang, W., Y. Liu, T. Zhang, D. Yang, Y. Wang, and D. Yu, "Integrated fiber-optic Fabry-Perot interferometer sensor for simultaneous measurement of liquid refractive index and temperature," IEEE Sensors Journal, Vol. 19, No. 13, 5007-5013, 2019.
doi:10.1109/JSEN.2019.2903583

5. Cao, X., D. Tian, Y. Liu, L. Zhang, and T. Wang, "Sensing characteristics of helical long-period gratings written in the double-clad fiber by CO2 laser," IEEE Sensors Journal, Vol. 18, No. 18, 7481-7485, 2018.
doi:10.1109/JSEN.2018.2855038

6. Li, Z., Y.-X. Zhang, W.-G. Zhang, L.-X. Kong, and T.-Y. Yan, "Micro-cap on 2-core-fiber facet hybrid interferometer for dual-parameter sensing," Journal of Lightwave Technology, Vol. 37, No. 24, 6114-6120, 2019.
doi:10.1109/JLT.2019.2946619

7. Rao, Y.-J., Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," Journal of Lightwave Technology, Vol. 21, No. 5, 1320, 2003.
doi:10.1109/JLT.2003.810561

8. Zheng, Z.-M., Y.-S. Yu, X.-Y. Zhang, Q. Guo, and H.-B. Sun, "Femtosecond laser inscribed small-period long-period fiber gratings with dual-parameter sensing," IEEE Sensors Journal, Vol. 18, No. 3, 1100-1103, 2017.
doi:10.1109/JSEN.2017.2761794

9. Tian, K., et al. "Simultaneous measurement of displacement and temperature based on two cascaded balloon-like bent fibre structures," Optical Fiber Technology, Vol. 58, 102277, 2020.
doi:10.1016/j.yofte.2020.102277

10. Yi, D., Z. Huo, Y. Geng, X. Li, and X. Hong, "PDMS-coated no-core fiber interferometer with enhanced sensitivity for temperature monitoring applications," Optical Fiber Technology, Vol. 57, 102185, 2020.
doi:10.1016/j.yofte.2020.102185

11. Gong, J., et al. "High sensitivity fiber temperature sensor based PDMS film on Mach-Zehnder interferometer," Optical Fiber Technology, Vol. 53, 102029, 2019.
doi:10.1016/j.yofte.2019.102029

12. Huang, B., et al. "In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement," IEEE Sensors Journal, Vol. 19, No. 14, 5632-5638, 2019.
doi:10.1109/JSEN.2019.2906243

13. Lei, X., Y. Feng, and X. Dong, "High-temperature sensor based on a special thin-diameter fiber," Optics Communications, Vol. 463, 125386, 2020.
doi:10.1016/j.optcom.2020.125386

14. Tong, R.-J., Y. Zhao, H.-K. Zheng, and F. Xia, "Simultaneous measurement of temperature and relative humidity by compact Mach-Zehnder interferometer and Fabry-Perot interferometer," Measurement, Vol. 155, 107499, 2020.
doi:10.1016/j.measurement.2020.107499

15. Wang, J., C. Bian, T. Gang, and M. Hu, "High-sensitive Mach-Zehnder interferometer for humidity measurements based on concatenating single-mode concave cone and core-offset," Optik, Vol. 208, 164465, 2020.
doi:10.1016/j.ijleo.2020.164465

16. Wang, Z., L. Huang, C. Liu, H. Wang, S. Sun, and D. Yang, "Sensitivity-enhanced fiber temperature sensor based on vernier effect and dual in-line Mach-Zehnder interferometers," IEEE Sensors Journal, Vol. 19, No. 18, 7983-7987, 2019.
doi:10.1109/JSEN.2019.2916891

17. Qi, K., Y. Zhang, J. Sun, G. J. O. Yi, and L. Technology, "All-fiber high temperature and refractive index sensor based on three microspheres array Michelson interferometer," Optics Laser Technology, Vol. 129, 106300, 2020.
doi:10.1016/j.optlastec.2020.106300

18. Sun, H., M. Shao, L. Han, J. Liang, R. Zhang, and H. Fu, "Large core-offset based in-fiber Michelson interferometer for humidity sensing," Optical Fiber Technology, Vol. 55, 102153, 2020.
doi:10.1016/j.yofte.2020.102153

19. Domınguez-Flores, C. E., et al. "Real-time temperature sensor based on in-fiber Fabry–Perot interferometer embedded in a resin," Journal of Lightwave Technology, Vol. 37, No. 4, 1084-2019, 2019.
doi:10.1109/JLT.2018.2886134

20. Lei, X. and X. Dong, "High-sensitivity Fabry-Perot interferometer high-temperature fiber sensor based on vernier effect," IEEE Sensors Journal, Vol. 20, No. 10, 5292-5297, 2020.
doi:10.1109/JSEN.2020.2970579

21. Liu, Y., et al. "Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature," IEEE Sensors Journal, Vol. 19, No. 23, 11236-11241, 2019.
doi:10.1109/JSEN.2019.2934738

22. Yang, D., et al. "Integrated optic-fiber sensor based on enclosed EFPI and structural phase-shift for discriminating measurement of temperature, pressure and RI," Optics Laser Technology, Vol. 126, 106112, 2020.
doi:10.1016/j.optlastec.2020.106112

23. Zhu, C., Y. Zhuang, B. Zhang, R. Muhammad, P. P. Wang, and J. Huang, "A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity," IEEE Photonics Technology Letters, Vol. 31, No. 1, 35-38, 2018.
doi:10.1109/LPT.2018.2881721

24. Cheng, H., S. Wu, Q. Wang, S. Wang, and P. Lu, "In-line hybrid fiber sensor for curvature and temperature measurement," IEEE Photonics Journal, Vol. 11, No. 6, 1-11, 2019.
doi:10.1109/JPHOT.2019.2944988

25. Xu, H., M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, "Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures," Optics Express, Vol. 22, No. 3, 3098-3104, 2014.
doi:10.1364/OE.22.003098

26. Liu, Y., S. Li, H. Chen, J. Li, W. Zhang, and M. Wang, "Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced photonic crystal fiber," Journal of Lightwave Technology, Vol. 38, No. 4, 919-928, 2019.
doi:10.1109/JLT.2019.2949067

27. Bai, Y., Y. Miao, H. Zhang, and J. Q. Yao, "Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2," Journal of Lightwave Technology, Vol. 38, No. 4, 840-845, 2020.
doi:10.1109/JLT.2019.2947644

28. Yin, J., et al., "Assembly-free-based fiber-optic micro-Michelson interferometer for high temperature sensing," IEEE Photonics Technology Letters, Vol. 28, No. 6, 625-628, 2015.
doi:10.1109/LPT.2015.2503276

29. Hernandez-Romano, I., D. Monzon-Hernandez, C. Moreno-Hernandez, D. Moreno-Hernandez, and J. Villatoro, "Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer," IEEE Photonics Technology Letters, Vol. 27, No. 24, 2591-2594, 2015.
doi:10.1109/LPT.2015.2478790

30. Li, J.-X., Z.-R. Tong, L. Jing, W.-H. Zhang, J. Qin, J.-W. J. O. C. Liu, and , "Fiber temperature and humidity sensor based on photonic crystal fiber coated with graphene oxide," Optics Communications, Vol. 467, 125707, 2020.
doi:10.1016/j.optcom.2020.125707

31. Sun, H., et al. "A hybrid fiber interferometer for simultaneous refractive index and temperature measurements based on Fabry-Perot/Michelson interference," IEEE Sensors Journal, Vol. 13, No. 5, 2039-2044, 2013.
doi:10.1109/JSEN.2013.2246862

32. Salunkhe, T. T., D. J. Lee, H. K. Lee, H. W. Choi, S. J. Park, and I. T. Kim, "Enhancing temperature sensitivity of the Fabry-P´erot interferometer sensor with optimization of the coating thickness of polystyrene," Sensors, Vol. 20, No. 3, 794, 2020.
doi:10.3390/s20030794

33. Liu, Y., et al. "Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure," Optics Communications, Vol. 443, 166-171, 2019.
doi:10.1016/j.optcom.2019.03.034

34. Zhao, Y., et al. "An integrated fiber michelson interferometer based on twin-core and side-hole fibers for multiparameter sensing," Journal of Lightwave Technology, Vol. 36, No. 4, 993-997, 2017.
doi:10.1109/JLT.2017.2753256