Vol. 98
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-04-29
Mechanisms and Influence Factors of Dynamic Behavior of Water Droplets on the Composite Insulator Surface Under ac Electric Field
By
Progress In Electromagnetics Research Letters, Vol. 98, 9-16, 2021
Abstract
The deformation behaviors of a droplet on surface of composite insulator can strengthen local electric field, which could finally lead to flashover. Both experiments and numerical simulations for dynamic behaviors of a droplet on the surface of a composite insulator under applied AC voltage are investigated in this paper. Experiments are performed to study the influences of water droplet's volume and conductivity on the dynamic behaviors. Two critical parameters are proposed to describe the morphological change process of water droplet, and it is shown that the process can be divided into three stages. Moreover, these motion laws are explained by establishing theoretical factors and physical influence models. In addition, we perform computer simulation to study the dynamic behaviors of a water droplet under AC field, and the findings are in good consistency with our experimental results, proving the rationality of the theoretical physical model. It is found that the vibration frequency of droplet changes regularly with at different stages under the AC electric field.
Citation
Wen Cao, Hua Feng, Hao Xue, Wei Shen, Long Zhao, and Hao Yang, "Mechanisms and Influence Factors of Dynamic Behavior of Water Droplets on the Composite Insulator Surface Under ac Electric Field," Progress In Electromagnetics Research Letters, Vol. 98, 9-16, 2021.
doi:10.2528/PIERL21022603
References

1. Karady, G. G., M. Shah, and R. L. Brown, "Flashover mechanism of silicone rubber insulators used for outdoor insulation — I," IEEE Transactions on Power Delivery, Vol. 10, 1965-1971, 1995.
doi:10.1109/61.473356

2. Li, Y., H. Jin, S. Nie, P. Zhang, and N. Gao, "Dynamic behavior of waterdroplets and flashover characteristics on a superhydrophobic silicone rubber surface," Applied Physics Letters, Vol. 110, 201602, 2017.
doi:10.1063/1.4983714

3. Liu, Y., X. Kong, Y. Wu, and B. Du, "Dynamic behavior of droplets and flashover characteristics for CFD and experimental analysis on sir composites," IEEE Access, Vol. 7, 8095-8101, 2019.
doi:10.1109/ACCESS.2018.2889075

4. Liu, Y., Y. Wu, and B. Du, "Dynamic formation mechanism of water droplet and induced surface discharges on sir composites," High Voltage, Vol. 4, 59-64, 2019.
doi:10.1049/hve.2018.5082

5. Nazemi, M. H. and V. Hinrichsen, "Partial discharge inception electric field strength of water droplets on polymeric insulating surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, 1088-1096, 2015.
doi:10.1109/TDEI.2015.7076810

6. Nazemi, M. H. and V. Hinrichsen, "Experimental investigations on water droplet oscillation and partial discharge inception voltage on polymeric insulating surfaces under the influence of ac electric field stress," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 20, 443-453, 2013.
doi:10.1109/TDEI.2013.6508746

7. Xie, G., J. Luo, Y. Yang, D. Guo, and L. Si, "Water droplets on a hydrophobic insulator surface under high voltages: A thermal perspective," Applied Physics Letters, Vol. 101, 131602, 2012.
doi:10.1063/1.4754689

8. Wang, S., "Polymeric outdoor insulation in polluted environment," Ph.D. thesis, Tsinghua University, 2001.

9. Lowe, J. and V. Hinrichsen, "Experimental investigation of the influence of electric charge on the behavior of water droplets in electric fields," IEEE 20th International Conference on Dielectric Liquids, 1-6, 2019.

10. Blackmore, P. and D. Birtwhistle, "Surface discharges on polymeric insulator shed surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 4, 210-217, 1997.
doi:10.1109/94.595248

11. Cao, W., M. J. Luan, W. Shen, et al. "Dynamic behavior of water droplets on AC composite insulator surface and its influence on flashover," Electric Machines and Control, Vol. 24, No. 2, 151-158, 2020 (in Chinese).

12. Cao, W., H. Xue, W. Shen, H. Yang, L. Zhao, and Y. Wang, "The effect of dynamic behaviors of the water droplet on DC/AC flashover performance on silicone rubber surface: Experiment, simulation and theoretical analysis," High Voltage, 1-11, 2021.

13. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 138, 1941.

14. Wang, L., J. Li, H. Mei, M. Lu, Z. Liu, and C. Zhang, "Flashover characteristics of post insulators under fog and haze conditions," High Voltage Engineering, Vol. 45, 433-439, 2019.

15. S. W. H. "Insulator pollution monitoring device: Development, calibration and field evaluation," Master’s thesis, Cape Town, 2005.

16. Wang, X. and X. Wang, Physical Chemistry, 109-110, Higher Education, Beijing, 2017.