Vol. 97
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-04-22
An Inline Quarter-Mode SIW Bandpass Filter Based on Frequency-Dependent Coupling Structures with Controllable Transmission Zeros
By
Progress In Electromagnetics Research Letters, Vol. 97, 141-148, 2021
Abstract
An inline quarter-mode substrate integrated waveguide (QMSIW) filter with controllable finite transmission zeros (FTZs) is presented based on a novel frequency-dependent coupling structure, which is constructed by a microstrip line with a pair of symmetric metallized via/buried holes and a magnetic coupling iris between two resonant cavities. FTZ can be independently introduced and controlled on both sides of passband to achieve high selectivity while keeping the filter compact configuration unchanged. For demonstration, the proposed structure is analyzed in detail. An inline fourth-order QMSIW bandpass filter (BPF) with two upper FTZs is designed, fabricated, and measured. The synthesis results, EM results, and measured results are in accordance with each other, which confirms the effectiveness of the proposed method.
Citation
Zhiwei Shi, Guo Hui Li, Yulu Song, and Binbin Cheng, "An Inline Quarter-Mode SIW Bandpass Filter Based on Frequency-Dependent Coupling Structures with Controllable Transmission Zeros," Progress In Electromagnetics Research Letters, Vol. 97, 141-148, 2021.
doi:10.2528/PIERL21021803
References

1. He, Y. X., M. Giuseppe, G. Wang, W. T. Wu, L. G. Sun, L. Wang, and R. Zhang, "A direct matrix synthesis for in-line filters with transmission zeros generated by frequency-variant couplings," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 4, 1780-1789, 2018.
doi:10.1109/TMTT.2018.2791940

2. He, Y. X., M. Giuseppe, Z. W. Ma, L. G. Sun, and Y. Nobuyuki, "Advanced direct synthesis approach for high selectivity in-line topology filters comprising N-1 adjacent frequency-variant couplings," IEEE Access, Vol. 7, 41659-41668, 2019.
doi:10.1109/ACCESS.2019.2907531

3. Lukasz, S., L. Natalia, and M. Michal, "A linear phase filter in quadruplet topology with frequencydependent couplings," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 1, 32-34, 2014.
doi:10.1109/LMWC.2013.2288178

4. Liu, Q., D. F. Zhou, D. W. Zhang, and D. L. Lv, "A novel frequency-dependent coupling with flexibly controllable slope and its applications on substrate-integrated waveguide filters," IEEE Microw. Wirel. Compon. Lett., Vol. 28, No. 11, 993-995, 2018.
doi:10.1109/LMWC.2018.2872325

5. Liu, Q., D. F. Zhou, D. W. Zhang, and D. L. Lv, "SIW bandpass filters in modified box-section scheme with bypass/constant/frequency-dependent coupling in diagonal cross-coupling path," IET Microw. Antennas Propag., Vol. 13, No. 5, 559-566, 2019.
doi:10.1049/iet-map.2018.5361

6. Leszczynska, N., S. Lukasz, and M. Micha, "A novel synthesis technique for microwave bandpass filters with frequency-dependent couplings," Progress In Electromagnetics Research, Vol. 137, 35-50, 2013.
doi:10.2528/PIER13011007

7. Gong, K., W. Hong, Y. Zhang, P. Chen, and C. J. You, "Substrate integrated waveguide quasielliptic filters with controllable electric and magnetic mixed coupling," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 10, 3071-3078, 2012.
doi:10.1109/TMTT.2012.2209437

8. Lukasz, S., J. Andrzej, and M. Michal, "A trisection filter design with negative slope of frequencydependent cross coupling implemented in substrate integrated waveguide (SIW)," IEEE Microw. Wirel. Compon. Lett., Vol. 23, No. 9, 456-458, 2013.
doi:10.1109/LMWC.2013.2272611

9. Lukasz, S., L. Adam, and M. Michal, "Coupled-resonator waveguide filter in quadruplet topology with frequency-dependent coupling — A design based on coupling matrix," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 11, 553-555, 2012.
doi:10.1109/LMWC.2012.2225604

10. Lukasz, S., L. Natalia, and M. Michal, "Generalized Chebyshev bandpass filters with frequencydependent couplings based on stubs," IEEE Trans. Microw. Theory. Tech., Vol. 61, No. 10, 3601-3612, 2013.
doi:10.1109/TMTT.2013.2279777

11. Zhu, F., W. Hong, J. X. Chen, and K. Wu, "Quarter-wavelength stepped-impedance resonator filter with mixed electric and magnetic coupling," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 2, 90-92, 2014.
doi:10.1109/LMWC.2013.2290225

12. Amari, S., F. Seyfert, and M. Bekheit, "Theory of coupled resonator microwave bandpass filters of arbitrary bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 8, 2188-2203, 2010.
doi:10.1109/TMTT.2010.2052874

13. Lukasz, S., L. Adam, and M. Michal, "Coupled-resonator filters with frequency-dependent couplings: coupling matrix synthesis," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 6, 312-314, 2012.
doi:10.1109/LMWC.2012.2197386

14. Stefano, M., T. Cristiano, B. Maurizio, and P. Luca, "Quarter-mode cavity filters in substrate integrated waveguide technology," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 8, 2538-2547, 2016.
doi:10.1109/TMTT.2016.2577690

15. Zhang S., X. D. Fu, J. J. Cheng, D. Q. Cheng, H. T. Wang, F. L. Liu, and L. C. Bao, "Compact balanced bandpass filter with the fractal defected structures," IEICE Electron. Expr., Vol. 15, No. 15, 1-6, 2018.

16. Li, P., H. Chu, and R. S. Chen, "Design of compact bandpass filters using quarter-mode and eighthmode SIW cavities," IEEE Trans. Compon. Packaging Manuf. Technol., Vol. 7, No. 6, 956-963, 2017.
doi:10.1109/TCPMT.2017.2677958

17. Phirun, K. and J. Yongchae, "Compact and wide stopband substrate integrated waveguide bandpass filter using mixed quarter- and one-Eighth modes cavities," IEEE Microw. Wirel. Compon. Lett., Vol. 30, No. 1, 16-19, 2020.
doi:10.1109/LMWC.2019.2954603

18. Wang, X., X. W. Zhu, Z. H. Jiang, Z. C. Hao, Y. W. Wu, and W. Hong, "Analysis of eighth-mode substrate-integrated waveguide cavity and flexible filter design," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 7, 1-12, 2019.
doi:10.1109/TMTT.2019.2913646

19. Liu, Q., D. F. Zhou, D. Zhang, S. Wang, and D. Lv, "Compact cross-coupled quarter-mode SIW bandpass filters with different locations of input and output ports," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Guangzhou, China, 2019.