1. Shen, W., "Extended-doublet half-mode substrate integrated waveguide bandpass filter with wide stopband," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 305-307, Apr. 2018.
doi:10.1109/LMWC.2018.2808408
2. Li, P., H. Chu, and R.-S. Chen, "Design of compact bandpass filters using quarter-mode and eighth-mode SIW cavities," IEEE Trans. Compon. Packaging Manuf. Technol., Vol. 7, No. 6, 956-963, Jun. 2017.
doi:10.1109/TCPMT.2017.2677958
3. Li, L., Z. Wu, K. Yang, X. Lai, and Z. Lei, "A novel miniature single-layer eighth-mode SIW filter with improved out-of-band rejection," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 5, 407-409, May 2018.
doi:10.1109/LMWC.2018.2813883
4. Szydlowski, L., A. Jedrzejewski, and M. Mrozowski, "A trisection filter design with negative slope of frequency-dependent cross coupling implemented in substrate integrated waveguide (SIW)," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. v, 456-458, Sep. 2013.
doi:10.1109/LMWC.2013.2272611
5. Szydlowski, L., N. Leszczynska, and M. Mrozowski, "A linear phase filter in quadruplet topology with frequency-dependent couplings," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 1, 32-34, Jan. 2014.
doi:10.1109/LMWC.2013.2288178
6. Jedrzejewski, A., L. Szydlowski, and M. Mrozowski, "Miniaturized bandpass substrate integrated waveguide filter with frequency dependent coupling realized using a symmetric GCPW discontinuity," Microw. Opt. Technol. Lett., Vol. 57, No. 8, 1818-1821, Aug. 2015.
doi:10.1002/mop.29203
7. Li, X., C. You, H. Yu, and Z. He, "Substrate integrated folded waveguide controllable mixed electric and magnetic coupling structure and its application to millimetre-wave pseudo-elliptic filters," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, e21074, 2017.
doi:10.1002/mmce.21074
8. Liu, Q., D. Zhou, D. Zhang, and D. Lv, "A novel frequency-dependent coupling with flexibly controllable slope and its applications on substrate-integrated waveguide filters," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 11, 993-995, Nov. 2018.
doi:10.1109/LMWC.2018.2872325
9. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937
10. He, Y., G. Macchiarella, G. Wang, W. Wu, L. Sun, L. Wang, and R. Zhang, "A direct matrix synthesis for in-line filters with transmission zeros generated by frequency-variant couplings," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 4, 1-10, Apr. 2018.
doi:10.1109/TMTT.2018.2791940
11. Li, G., "Coupling matrix optimization synthesis for filters with constant and frequency-variant couplings," Progress In Electromagnetics Research Letters, Vol. 82, 73-80, Mar. 2019.
doi:10.2528/PIERL19011103
12. Leszczynska, N., L. Szydlowski, and M. Mrozowski, "A novel synthesis technique for microwave bandpass filters with frequency-dependent couplings," Progress In Electromagnetics Research, Vol. 135, 35-50, 2013.
doi:10.2528/PIER13011007
13. Su, Z. L., B. W. Xu, S. Y. Zheng, H. W. Liu, and Y. L. Long, "High-isolation and wide-stopband SIW diplexer using mixed electric and magnetic coupling," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 67, No. 1, 32-36, Jan. 2019.
doi:10.1109/TCSII.2019.2903388
14. Cheng, F., X. T. Li, P. Lu, and K. Huang, "SIW filter with broadband stopband by suppressing the coupling of higher-order resonant modes," Electron. Lett., Vol. 55, No. 25, 1345-1347, Dec. 2019.
doi:10.1049/el.2019.2322
15. Hong, J. S., Microstrip Filters for RF/Microwave Applications, A John Wiley & Sons.