Vol. 97
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-03-15
A Terahertz Demultiplexer Based on Metamaterials Applied to Terahertz Communication Systems
By
Progress In Electromagnetics Research Letters, Vol. 97, 13-19, 2021
Abstract
This paper proposes a novel terahertz demultiplexer based on metamaterials. Its surface metal structure comprises double U-shaped structures and a rectangular wire. The demultiplexer can separate terahertz of 0.225 THz and 0.410 THz, with high isolations of 41 dB and 38 dB, low insertion losses of 0.07 dB and 0.11 dB, and stable group delays of 3.5 ps and 3.8 ps at the center frequency, respectively. The equivalent parameters of metamaterials are simulated, and the electric field, current, and power distribution characteristics at operating frequency points are analyzed. This metamaterial is easy to process and is expected to be applied in future 6G wavelength division multiplexing systems.
Citation
Wu Pan, Xuewen Zhang, Yong Ma, Zhen Zhang, Xi Wang, Tao Shen, Yi Li, and Lihao Yang, "A Terahertz Demultiplexer Based on Metamaterials Applied to Terahertz Communication Systems," Progress In Electromagnetics Research Letters, Vol. 97, 13-19, 2021.
doi:10.2528/PIERL21011902
References

1. Keshavarz, S., A. Abdipour, A. Mohammadi, et al. "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," International Journal of Electronics and Communications, Vol. 111, 152913, 2019.
doi:10.1016/j.aeue.2019.152913

2. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technolog (ECTI-CON), 1-4, 2016.

3. Li, S., H. Liu, Q. Sun, et al. "Multi-channel terahertz wavelength division demultiplexer with defects-coupled photonic crystal waveguide," Journal of Modern Optics, Vol. 63, No. 10, 955-960, 2016.
doi:10.1080/09500340.2015.1111457

4. Wu, X., Z. Lu, X. Guo, et al. "A graphene-based terahertz wavelength division multiplexer," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vol. , No. , –, Vol. 63, No. 10, 1600-1601, 2015.
doi:10.1109/APS.2015.7305189

5. Yuan, M., Q. Wang, Y. Li, et al. "Ultra-compact terahertz plasmonic wavelength diplexer," Applied Optics, Vol. 59, No. 33, 10451-10456, 2020.
doi:10.1364/AO.409828

6. Withayachumnankul, W., M. Fujita, T. Nagatsuma, et al. "Integrated silicon photonic crystals toward terahertz communications," Journal of Modern Optics, Vol. 6, No. 16, 1800401, 2018.

7. Yata, M., M. Fujita, T. Nagatsuma, et al. "Diplexer for terahertz-wave integrated circuit using a photonic-crystal slab," 2014 International Topical Meeting on Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), 40-43, 2014.
doi:10.1109/MWP.2014.6994484

8. Anwar, R. S., L. Mao, H. Ning, et al. "Frequency selective surfaces: A review," Applied Sciences, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689

9. Chen, H. T., W. J. Padilla, M. J. Cich, et al. "A metamaterial solid-state terahertz phase modulator," Nature Photonics, Vol. 3, No. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3

10. Li, J., Y. Zhang, J. Li, et al. "Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces," Nanoscale, Vol. 11, No. 12, 5746-5753, 2019.
doi:10.1039/C9NR00675C

11. Grady, N. K., J. E. Heyes, D. R. Chowdhury, et al. "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

12. Jung, J., H. Park, J. Park, et al. "Broadband metamaterials and metasurfaces: A review from the perspectives of materials and devices," Nanophotonics, Vol. 1, ahead-of-print, 2020.

13. Kim, I. K. and V. V. Varadan, "Electric and magnetic resonances in symmetric pairs of split ring resonators," Science, Vol. 106, No. 7, 074504, 2009.

14. Faruk, A. and C. Sabah, "Terahertz metamaterial absorber comprised of H-shaped resonator within split-square ring and its sensory application," Optik, Vol. 192, 162976, 2019.
doi:10.1016/j.ijleo.2019.162976

15. Cohen, D. and R. Shavit, "Bi-anisotropic metamaterials effective constitutive parameters extraction using oblique incidence S-parameters method," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2071-2078, 2015.
doi:10.1109/TAP.2015.2405078

16. Smith, D. R., S. Schultz, P. Markos, et al. "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

17. Chen, J., Y. Dai, L. Yan, et al. "Steady bound electromagnetic eigenstate arises in a homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector," Optics Communications, Vol. 413, 167-171, 2018.
doi:10.1016/j.optcom.2017.12.033

18. Suzuki, T. and H. Asada, "Reflectionless zero refractive index metasurface in the terahertz waveband," Science, Vol. 28, No. 15, 21509-21521.

19. Zhang, J., P. Tang, L. Yu, et al. "Channel measurements and models for 6G: Current status and future outlook," Frontiers of Information Technology & Electronic Engineering, Vol. 21, No. 1, 39-61, 2020.
doi:10.1631/FITEE.1900450

20. Linden, S., C. Enkrich, M. Wegener, et al. "Magnetic response of metamaterials at 100 terahertz," Science, Vol. 306, No. 5700, 1351-1353, 2004.
doi:10.1126/science.1105371

21. Rockstuhl, C., T. Zentgraf, H. Guo, et al. "Resonances of split-ring resonator metamaterials in the near infrared," Applied Physics B, Vol. 84, No. 1–2, 219-227, 2006.
doi:10.1007/s00340-006-2205-2