College of Photoelectronic Engineering
Chongqing University of Posts and Telecommunications
China
HomepageCollege of Photoelectronic Engineering
University of Posts and Telecommunications
China
HomepageCollege of Photoelectric Engineering
Chongqing University of Posts and Telecommunications
China
HomepageCollege of Photoelectronic Engineering
University of Posts and Telecommunications
China
HomepageCollege of Photoelectronic Engineering
University of Posts and Telecommunications
China
HomepageCollege of Photoelectronic Engineering
University of Posts and Telecommunications
China
HomepageCollege of Photoelectronic Engineering
University of Posts and Telecommunications
China
HomepageCollege of Photoelectronic Engineering
University of Posts and Telecommunications
China
Homepage1. Keshavarz, S., A. Abdipour, A. Mohammadi, et al. "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," International Journal of Electronics and Communications, Vol. 111, 152913, 2019.
doi:10.1016/j.aeue.2019.152913
2. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technolog (ECTI-CON), 1-4, 2016.
3. Li, S., H. Liu, Q. Sun, et al. "Multi-channel terahertz wavelength division demultiplexer with defects-coupled photonic crystal waveguide," Journal of Modern Optics, Vol. 63, No. 10, 955-960, 2016.
doi:10.1080/09500340.2015.1111457
4. Wu, X., Z. Lu, X. Guo, et al. "A graphene-based terahertz wavelength division multiplexer," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vol. , No. , –, Vol. 63, No. 10, 1600-1601, 2015.
doi:10.1109/APS.2015.7305189
5. Yuan, M., Q. Wang, Y. Li, et al. "Ultra-compact terahertz plasmonic wavelength diplexer," Applied Optics, Vol. 59, No. 33, 10451-10456, 2020.
doi:10.1364/AO.409828
6. Withayachumnankul, W., M. Fujita, T. Nagatsuma, et al. "Integrated silicon photonic crystals toward terahertz communications," Journal of Modern Optics, Vol. 6, No. 16, 1800401, 2018.
7. Yata, M., M. Fujita, T. Nagatsuma, et al. "Diplexer for terahertz-wave integrated circuit using a photonic-crystal slab," 2014 International Topical Meeting on Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), 40-43, 2014.
doi:10.1109/MWP.2014.6994484
8. Anwar, R. S., L. Mao, H. Ning, et al. "Frequency selective surfaces: A review," Applied Sciences, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689
9. Chen, H. T., W. J. Padilla, M. J. Cich, et al. "A metamaterial solid-state terahertz phase modulator," Nature Photonics, Vol. 3, No. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3
10. Li, J., Y. Zhang, J. Li, et al. "Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces," Nanoscale, Vol. 11, No. 12, 5746-5753, 2019.
doi:10.1039/C9NR00675C
11. Grady, N. K., J. E. Heyes, D. R. Chowdhury, et al. "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399
12. Jung, J., H. Park, J. Park, et al. "Broadband metamaterials and metasurfaces: A review from the perspectives of materials and devices," Nanophotonics, Vol. 1, ahead-of-print, 2020.
13. Kim, I. K. and V. V. Varadan, "Electric and magnetic resonances in symmetric pairs of split ring resonators," Science, Vol. 106, No. 7, 074504, 2009.
14. Faruk, A. and C. Sabah, "Terahertz metamaterial absorber comprised of H-shaped resonator within split-square ring and its sensory application," Optik, Vol. 192, 162976, 2019.
doi:10.1016/j.ijleo.2019.162976
15. Cohen, D. and R. Shavit, "Bi-anisotropic metamaterials effective constitutive parameters extraction using oblique incidence S-parameters method," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2071-2078, 2015.
doi:10.1109/TAP.2015.2405078
16. Smith, D. R., S. Schultz, P. Markos, et al. "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104
17. Chen, J., Y. Dai, L. Yan, et al. "Steady bound electromagnetic eigenstate arises in a homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector," Optics Communications, Vol. 413, 167-171, 2018.
doi:10.1016/j.optcom.2017.12.033
18. Suzuki, T. and H. Asada, "Reflectionless zero refractive index metasurface in the terahertz waveband," Science, Vol. 28, No. 15, 21509-21521.
19. Zhang, J., P. Tang, L. Yu, et al. "Channel measurements and models for 6G: Current status and future outlook," Frontiers of Information Technology & Electronic Engineering, Vol. 21, No. 1, 39-61, 2020.
doi:10.1631/FITEE.1900450
20. Linden, S., C. Enkrich, M. Wegener, et al. "Magnetic response of metamaterials at 100 terahertz," Science, Vol. 306, No. 5700, 1351-1353, 2004.
doi:10.1126/science.1105371
21. Rockstuhl, C., T. Zentgraf, H. Guo, et al. "Resonances of split-ring resonator metamaterials in the near infrared," Applied Physics B, Vol. 84, No. 1–2, 219-227, 2006.
doi:10.1007/s00340-006-2205-2