Vol. 96
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-02-17
A Compact Broadband Folded Dipole Antenna Element with Ball Grid Array Packaging for New 5G Application
By
Progress In Electromagnetics Research Letters, Vol. 96, 113-119, 2021
Abstract
A compact broadband folded dipole antenna element with a ball grid array packaging is proposed in this letter. The compact antenna element is fabricated on a low-cost FR4 substrate consisting of only one dielectric layer. The solder balls are mounted on the square ground metal plane of the antenna element to form the ball grid array (BGA) packaging, which allows the antenna element to be surface mounted with other surface-mount devices (SMDs). Furthermore, ball grid array packaging has great potential for minimizing the size of antenna elements. The dimension of the proposed antenna element is only 6 mm × 6 mm × 1.6 mm. Parameter analysis shows that the solder balls have little effect on antenna performance. The proposed folded dipole antenna element is fed by a 50 Ω grounded coplanar waveguide (GCPW) transmission line on the evaluation board. The antenna prototype has been designed, analyzed, and manufactured. Measured results of the prototype show that the -10 dB impedance bandwidth is 45.4 % (22.3-35.4 GHz), and the peak gain achieves 6.62 dBi at 35 GHz. The measurement results show that the proposed antenna element has great potential for the 5G millimeter wave application.
Citation
Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "A Compact Broadband Folded Dipole Antenna Element with Ball Grid Array Packaging for New 5G Application," Progress In Electromagnetics Research Letters, Vol. 96, 113-119, 2021.
doi:10.2528/PIERL21010502
References

1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, 2011.
doi:10.1109/MCOM.2011.5783993

2. Wang, H., P. Zhang, J. Li, and X. You, "Radio propagation and wireless coverage of LSAA-based 5G millimeter-wave mobile communication systems," China Communications, Vol. 16, No. 5, 1-18, 2019.
doi:10.23919/j.cc.2019.05.001

3. Park, J.-S., J.-B. Ko, H.-K. Kwon, B.-S. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514

4. Alkaraki, S., A. S. Andy, Y. Gao, K.-F. Tong, Z. Ying, R. Donnan, and C. Parini, "Compact and low-cost 3-D printed antennas metalized using spray-coating technology for 5G mm-wave communication systems," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 11, 2051-2055, 2018.
doi:10.1109/LAWP.2018.2848912

5. Mak, K.-M., K.-K. So, H.-W. Lai, and K.-M. Luk, "A magnetoelectric dipole leaky-wave antenna for millimeter-wave application," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6395-6402, 2017.
doi:10.1109/TAP.2017.2722868

6. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6904-6914, 2017.
doi:10.1109/TAP.2017.2759899

7. Ahmad, Z. and J. Hesselbarth, "High-efficiency wideband surface-mount elevated 3-D patch antenna for millimeter waves," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 573-576, 2017.
doi:10.1109/LAWP.2017.2682962

8. Hu, W., X. Liu, S. Gao, L. Wen, Q. Luo, P. Fei, Y. Yin, and Y. Liu, "Compact wideband folded dipole antenna with multi-resonant modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 6789-6799, 2019.
doi:10.1109/TAP.2019.2925188

9. Wang, Z., J. Wu, Y. Yin, and X. Liu, "A broadband dual-element folded dipole antenna with a reflector," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 750-753, 2014.
doi:10.1109/LAWP.2014.2315836

10. Qu, S., C. Chan, and Q. Xue, "Ultrawideband composite cavity-backed folded sectorial bowtie antenna with stable pattern and high gain," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2478-2483, 2009.
doi:10.1109/TAP.2009.2024585

11. Low, Y. L., Y. Degani, K. V. Guinn, T. D. Dudderrar, J. A. Gregus, and R. C. Frye, "RF flipmodule BGA package," IEEE Transactions on Advanced Packaging, Vol. 22, No. 2, 111-115, 1999.
doi:10.1109/6040.763180

12. Heyen, J., T. von Kerssenbrock, A. Chernyakov, P. Heide, and A. F. Jacobvvv, "Novel LTCC/BGA modules for highly integrated millimeter-wave transceivers," IEEE Trans. Microwave Theory Techn., Vol. 51, No. 12, 2589-2596, 2003.
doi:10.1109/TMTT.2003.819210

13. Kangasvieri, T., J. Halme, J. Vahakangas, and M. Lahti, "Broadband BGA-via transitions for reliable RF/microwave LTCC-SiP module packaging," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, 34-36, 2008.
doi:10.1109/LMWC.2007.911986