1. Rappaport, C. M., M. Kilmer, and E. Miller, "Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 13, No. 5, 471-482, 2000.
doi:10.1002/1099-1204(200009/10)13:5<471::AID-JNM378>3.0.CO;2-A
2. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006
3. Masumnia-Bisheh, K., K. Forooraghi, and M. Ghaffari-Miab, "Electromagnetic uncertainty analysis using stochastic FDFD method," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3268-3277, 2019.
doi:10.1109/TAP.2019.2896771
4. Dong, Q. and C. M. Rappaport, "Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 11, 3664-3670, 2009.
doi:10.1109/TGRS.2009.2028740
5. Sun, S., B. J. Kooij, and A. G. Yarovoy, "A linear model for microwave imaging of highly conductive scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1149-1164, 2017.
doi:10.1109/TMTT.2017.2772795
6. Layek, M. K. and P. Sengupta, "Forward modeling of GPR data by unstaggered finite difference frequency domain (FDFD) method: An approach towards an appropriate numerical scheme," Journal of Environmental and Engineering Geophysics, Vol. 24, No. 3, 487-496, 2019.
doi:10.2113/JEEG24.3.487
7. Masumnia-Bisheh, K. and C. Furse, "Bioelectromagnetic uncertainty analysis using geometrically stochastic FDFD method," IEEE Transactions on Antennas and Propagation, 2020, doi: 10.1109/TAP.2020.3025238.
8. Austin, A. C. M. and C. D. Sarris, "Efficient analysis of geometrical uncertainty in the FDTD method using polynomial chaos with application to microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4293-4301, 2013.
doi:10.1109/TMTT.2013.2281777
9. Litvinenko, A., A. C. Yucel, H. Bagci, J. Oppelstrup, E. Michielssen, and R. Tempone, "Computation of electromagnetic fields scattered from objects with uncertain shapes using multilevel Monte Carlo method," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 37-50, 2019.
doi:10.1109/JMMCT.2019.2897490
10. Edwards, R. S., A. C. Marvin, and S. J. Porter, "Uncertainty analyses in the finite-difference time-domain method," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 155-163, Feb. 2010.
doi:10.1109/TEMC.2009.2034645
11. Nguyen, B. T., A. Samimi, S. E. W. Vergara, C. D. Sarris, and J. J. Simpson, "Analysis of electromagnetic wave propagation in variable magnetized plasma via polynomial chaos expansion," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 438-449, 2018.
doi:10.1109/TAP.2018.2879676
12. Nguyen, B. T., S. E. W. Vergara, C. D. Sarris, and J. J. Simpson, "Ionospheric variability effects on impulsive ELF antipodal propagation about the earth sphere," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 66, 6244-6254, 2018.
doi:10.1109/TAP.2018.2874478
13. Gorniak, P., "An effective FDTD algorithm for simulations of stochastic EM fields in 5G frequency band," 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1417-1421, Bologna, 2018.
14. Zygiridis, T., A. Papadopoulos, N. Kantartzis, C. Antonopoulos, E. N. Glytsis, and T. D. Tsiboukis, "Intrusive polynomial-chaos approach for stochastic problems with axial symmetry," IET Microwaves, Antennas and Propagation, Vol. 13, No. 6, 782-788, 2019.
doi:10.1049/iet-map.2018.5306
15. Cheng, X., W. Shao, K. Wang, and B.-Z. Wang, "Uncertainty analysis in dispersive and lossy media for ground-penetrating radar modeling," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1931-1935, 2019.
doi:10.1109/LAWP.2019.2933777
16. Liu, J., H. Li, and X. Xi, "General polynomial chaos-based expansion finite-difference time-domain method for analysing electromagnetic wave propagation in random dispersive media," IET Microwaves, Antennas and Propagation, Vol. 15, No. 2, 221-228, 2021.
doi:10.1049/mia2.12040
17. Wang, K. C., Z. He, D. Z. Ding, and R. S. Chen, "Uncertainty scattering analysis of 3-D objects with varying shape based on method of moments," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2835-2840, 2019.
doi:10.1109/TAP.2019.2896456
18. Xiu, D., "Efficient collocational approach for parametric uncertainty analysis," Communications in Computational Physics, Vol. 2, No. 2, 293-309, 2007.
19. Giraldi, L., A. Litvinenko, D. Liu, H. G. Matthies, and A. Nouy, "To be or not to be intrusive? The solution of parametric and stochastic equations - The plain vanilla Galerkin case," SIAM Journal on Scientific Computing, Vol. 36, No. 6, A2720-A2744, 2014.
doi:10.1137/130942802
20. Austin, A. C. M., "Wireless channel characterization in burning buildings over 100-1000 MHz," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3265-3269, 2016.
doi:10.1109/TAP.2016.2562671
21. Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010.
22. Crestaux, T., O. Le Maıtre, and J.-M. Martinez, "Polynomial chaos expansion for sensitivity analysis," Reliability Engineering & System Safety, Vol. 94, No. 7, 1161-1172, 2009.
doi:10.1016/j.ress.2008.10.008