Vol. 101
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-02-18
Broadband and High-Aperture Efficiency Fabry-Perot Antenna with Low RCS Based on Nonuniform Metamaterial Superstrate
By
Progress In Electromagnetics Research M, Vol. 101, 59-68, 2021
Abstract
Due to the nonuniform Electromagnetic (EM) field distribution over the superstrate, a Fabry-Perot Resonant Antenna is normally with high directivity but relatively low aperture efficiency when its aperture size is electrically large. In this paper, a Fabry-Perot resonator cavity antenna (FPCA) with a nonuniform metamaterial superstrate is proposed. The nonuniform metamaterial superstrate is a nonuniform double-sided printed dielectric, in which the upper surface is used for wideband RCS reduction, and the bottom surface is the nonuniform partially reflective surface (PRS) of FPRA for wideband and high aperture efficiency performances. Wideband RCS reduction is realized by designing the phase differences 90˚ in turn among three adjacent frequency-selective surfaces. The wideband 3 dB gain bandwidth and high aperture efficiency performances are obtained by designing the PRS with a positive reflection phase gradient vs frequency and a negative transverse-reflection magnitude gradient, respectively. The measured results show that the gain of the proposed antenna is 11.5 dBi greater than that of the primary source antenna with a peak value 15.5 dBi at 9.2 GHz. The aperture efficiency is 73.3%. The 3-dB gain bandwidth is from 8.75 to 11.47 GHz (26.9%), and the RCS reduction can be obtained effectively from 8.2 to 20 GHz (83.7%).
Citation
Hui-Fen Huang, and Qi-Sheng Fan, "Broadband and High-Aperture Efficiency Fabry-Perot Antenna with Low RCS Based on Nonuniform Metamaterial Superstrate," Progress In Electromagnetics Research M, Vol. 101, 59-68, 2021.
doi:10.2528/PIERM20120903
References

1. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528

2. Wiesbeck, W. and E. Heidrich, "Influence of antennas on the radarcross section of camouflaged aircraft," Proc. Int. Conf. Radar, 122-125, 1992.

3. Pan, W., C. Huang, P. Chen, X. Ma, C. Hu, and X. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 945-949, Feb. 2014.
doi:10.1109/TAP.2013.2291008

4. Jiang, H., Z. Xue, W. Li, W. Ren, and M. Cao, "Low-RCS high-gain partially reflecting surface antenna with metamaterial ground plane," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4127-4132, Sep. 2016.
doi:10.1109/TAP.2016.2589964

5. Zhang, L., et al. "Realization of low scattering for a high-gain Fabry-Pèrot antenna using coding metasurface," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3374-3383, Jul. 2017.
doi:10.1109/TAP.2017.2700874

6. Hashmi, R. M., B. A. Zeb, and K. P. Esselle, "Wideband high-gain EBG resonator antennas with small footprints and all-dielectric super structures," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2970-2977, Jun. 2014.
doi:10.1109/TAP.2014.2314534

7. Hashmi, R. M. and K. P. Esselle, "A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 830-835, Feb. 2016.
doi:10.1109/TAP.2015.2511801

8. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," Proc. 12th Eur. Conf. Antennas Propag., 1-3, London, U.K., Apr. 2018.

9. Afzal, M. U. and K. P. Esselle, "A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 276-280, Jan. 2016.
doi:10.1109/TAP.2015.2493159

10. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1916-1921, Mar. 2019.
doi:10.1109/TAP.2019.2891232

11. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2463-2471, May 2014.
doi:10.1109/TAP.2014.2308533

12. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 743-750, Feb. 2012.
doi:10.1109/TAP.2011.2173113

13. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, and S. Li, "Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with Chessboard arranged metamaterial superstrate," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 590-599, Feb. 2018.
doi:10.1109/TAP.2017.2780896

14. Zhou, L., X. Chen, and X. Duan, "Fabry-Pérot resonator antenna with high aperture efficiency using a double-layer nonuniform superstrate," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2061-2066, Apr. 2018.
doi:10.1109/TAP.2018.2800761

15. Galarregui, J. C. I., A. T. Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, Dec. 2013.
doi:10.1109/TAP.2013.2282915

16. Paquay, M., J.-C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/TAP.2007.910306

17. Jia, Y., Y. Liu, S. Gong, W. Zhang, and G. Liao, "A low-RCS and high-gain circularly polarized antenna with a low profile," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2477-2480, 2017.
doi:10.1109/LAWP.2017.2725380

18. Lian, R., Z. Tang, and Y. Yin, "Design of a broadband polarization reconfigurable Fabry-Perot resonator antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 1, 122-125, Jan. 2018.
doi:10.1109/LAWP.2017.2777502

19. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455

20. Jiang, H., Z. Xue, W. Li, W. Ren, and M. Cao, "Low-RCS high-gain partially reflecting surface antenna with metamaterial ground plane," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4127-4132, Sep. 2016.
doi:10.1109/TAP.2016.2589964

21. Mu, J., H. Wang, H.-Q. Wang, and Y. Huang, "Low-RCS and gain enhancement design of a novel partially reflecting and absorbing surface antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1903-1906, 2017.
doi:10.1109/LAWP.2017.2685623

22. Ren, J., W. Jiang, K. Zhang, and S. Gong, "A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 853-856, May 2018.
doi:10.1109/LAWP.2018.2820015