1. Fu, G., A. Menciassi, and P. Dario, "Development of a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots," Robotics and Autonomous Systems, Vol. 60, 1317-1326, 2012.
doi:10.1016/j.robot.2012.06.002
2. Schwenke, H., et al., "Optical methods for dimensional metrology in production engineering," CIRP Anmanuf. Technol., Vol. 51, 685-699, 2002.
doi:10.1016/S0007-8506(07)61707-7
3. Lu, Y. and R. Lu, "Structured-illumination reflectance imaging coupled with phase analysis techniques for surface profiling of apples," Journal of Food Engineering, Vol. 232, 11-20, 2018.
doi:10.1016/j.jfoodeng.2018.03.016
4. Sansoni, G., M. Trebeschi, and F. Docchio, "State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation," Sensors, Vol. 9, 568-601, 2009.
doi:10.3390/s90100568
5. Nadolny, K. and W. Kaplonek, "Analysis of flatness deviations for austenitic stainless steel workpieces after efficient surface machining," Measurement Science Review, Vol. 1, 204-212, 2014.
doi:10.2478/msr-2014-0028
6. Ye, J., et al., "3D reconstruction of line-structured light based on binocular vision calibration rotary axis," Applied Optics, Vol. 5, 8272-8278, 2020.
doi:10.1364/AO.403356
7. Wang, J. and Y. Yang, "High-speed three-dimensional measurement technique for object surface with a large range of reflectivity variations," Applied Optics, Vol. 57, 9172-9182, 2018.
doi:10.1364/AO.57.009172
8. Schlarp, J., E. Csencsics, and G. Schitter, "Optical scanning of laser line sensors for 3D imaging," Applied Optics, Vol. 57, 5242-5248, 2018.
doi:10.1364/AO.57.005242
9. Lilienblum, E. and A. Al-Hamadi, "A structured light approach for 3-D surface reconstruction with a stereo line-scan system," IEEE Trans. Instrum. Meas., Vol. 64, 1266-1274, 2015.
doi:10.1109/TIM.2014.2364105
10. Yang, Y., et al., "3D color reconstruction based on underwater RGB laser line scanning system," Optik, Vol. 125, 6074-6077, 2014.
doi:10.1016/j.ijleo.2014.07.072
11. Cai, F., et al., "High-resolution mobile bio-microscope with smartphone telephoto camera lens," Optik, Vol. 20, 164449, 2020.
doi:10.1016/j.ijleo.2020.164449
12. Cai, F., et al., "Handheld four-dimensional optical sensor," Optik, Vol. 20, 164001, 2020.
doi:10.1016/j.ijleo.2019.164001
13. Xu, Z., et al., "Light-sheet microscopy for surface topography measurements and quantitative analysis," Sensors, Vol. 20, 284210, 2020.
14. Blais, F., "Review of 20 years of range sensor development," Journal of Electronic Imaging, Vol. 13, 231-243, 2004.
doi:10.1117/1.1631921
15. Lin, H., et al., "Review and comparison of high-dynamic range three-dimensional shape measurement techniques," Journal of Sensors, Vol. 2017, 957685, 2017.
doi:10.1155/2017/9576850
16. Brydegaard, M., et al., "The Scheimpflug lidar method," SPIE Lidar Remote Sensing for Environmental Monitoring, Vol. 10406, 104060I, 2017.
17. Prasad, A. K., "Stereoscopic particle image velocimetry," Experimentsin Fluids, Vol. 29, 103-116, 2000.
doi:10.1007/s003480000143
18. Zang, W. J. and A. K. Prasad, "Performance evaluation of a Scheimpflug stereocamera for particle image velocimetry," Applied Optics, Vol. 36, 8738-8744, 1997.
doi:10.1364/AO.36.008738
19. Prasad, A. K. and K. Jensen, "Scheimpflug stereocamera for particle image velocimetry in liquid flows," Applied Optics, Vol. 34, 7092-7099, 1995.
doi:10.1364/AO.34.007092
20. Kong, Z., et al., "Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols," Applied Optics, Vol. 5, 8612-8621, 2019.
doi:10.1364/AO.58.008612
21. Larsson, J., et al., "Atmospheric CO2 sensing using Scheimpflug-lidar based on a 1.57-μm fiber source," Optics Express, Vol. 27, 17348-17358, 2019.
doi:10.1364/OE.27.017348
22. Sun, G., et al., "Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection," Optics Express, Vol. 26, 7423-7436, 2018.
doi:10.1364/OE.26.007423
23. Mei, L., P. Guan, and Z. Kong, "Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique," Optics Express, Vol. 25, A953-A962, 2017.
doi:10.1364/OE.25.00A953
24. Mei, L., "Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme," Optics Letters, Vol. 42, 3562-3565, 2017.
doi:10.1364/OL.42.003562
25. Mei, L., et al., "Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique," Optics Express, Vol. 25, A628-A638, 2017.
doi:10.1364/OE.25.00A628
26. Mei, L. and M. Brydegaard, "Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system," Optics Express, Vol. 23, 1613-1628, 2015.
doi:10.1364/OE.23.0A1613
27. Lin, H., Y. Zhang, and L. Mei, "Fluorescence Scheimpflug LiDAR developed for the three-dimension profiling of plants," Optics Express, Vol. 28, 9269-9279, 2020.
doi:10.1364/OE.389043
28. Wang, X., et al., "Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system," Applied Physics B — Lasers and Optics, Vol. 12, 20711, 2018.
29. Zhao, G., et al., "Inelastic hyperspectral lidar for profiling aquatic ecosystems," Laser & Photonics Reviews, Vol. 10, 807-813, 2016.
doi:10.1002/lpor.201600093
30. Gao, F., et al., "Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system," Optics Express, Vol. 25, 25515-25522, 2017.
doi:10.1364/OE.25.025515
31. Chen, K., et al., "Overwater light-sheet Scheimpflug lidar system for an underwater three-dimensional profile bathymetry," Applied Optics, Vol. 58, 7643-7648, 2019.
doi:10.1364/AO.58.007643
32. Gao, F., et al., "Light-sheet based two-dimensional Scheimpflug lidar system for profile measurements," Optics Express, Vol. 26, 27179-27188, 2018.
doi:10.1364/OE.26.027179
33. Peng, J., et al., "Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens," Applied Optics, Vol. 54, 10055-10062, 2015.
doi:10.1364/AO.54.010055
34. Yin, X., et al., "Analysis and simplification of lens distortion model for the Scheimpflug imaging system calibration," Optics Communications, Vol. 43, 380-384, 2019.
doi:10.1016/j.optcom.2018.05.086
35. Sun, C., et al., "Review of calibration methods for Scheimpflug camera," Journalof Sensors, Vol. 2018, 3901431, 2018.
36. Miks, A., J. Novak, and P. Novak, "Analysis of imaging for laser triangulation sensors under Scheimpflug rule," Optics Express, Vol. 21, 18225-18235, 2013.
doi:10.1364/OE.21.018225
37. Li, J., et al., "Calibration of a multiple axes 3-D laser scanning system consisting of robot, portable laser scanner and turntable," Optik, Vol. 122, 324-329, 2011.
doi:10.1016/j.ijleo.2010.02.014