1. Gu, X., A. Valdes-Garcia, A. Natarajan, B. Sadhu, D. Liu, and S. K. Reynolds, "W-band scalable phased arrays for imaging and communications," IEEE Communications Magazine, Vol. 53, No. 4, 196-204, Apr. 2015.
doi:10.1109/MCOM.2015.7081095
2. Eudeline, P., "Survey of active electronically scanned antenna in Thales radars," 2013 IEEE International Symposium on Phased Array Systems and Technology, 12-16, Waltham, USA, Oct. 2013.
3. Agrawal, A. K. and E. L. Holzman, "Beamformer architectures for active phased-array radar antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, 432-442, Mar. 1999.
doi:10.1109/8.768777
4. Kibaroglu, K., M. Sayginer, T. Phelps, and G. M. Rebeiz, "A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8-12-Gb/s 5G link at 300 meters without any calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5796-5811, Dec. 2018.
doi:10.1109/TMTT.2018.2854174
5. Leino, M. K., R. Montoya Moreno, J. Ala-Laurinaho, R. Valkonen, and V. Viikari, "Waveguide-based phased array with integrated element-specific electronics for 28 GHz," IEEE Access, Vol. 7, 90 045-90 054, 2019.
doi:10.1109/ACCESS.2019.2925458
6. Kuai, L., J. Chen, Z. H. Jiang, C. Yu, C. Guo, Y. Yu, H. Zhou, and W. Hong, "A N260 band 64 channel millimeter wave full-digital multi-beam array for 5G massive MIMO applications," IEEE Access, Vol. 8, 47 640-47 653, 2020.
doi:10.1109/ACCESS.2020.2978070
7. Guan, J., A. Paidimarri, A. Valdes-Garcia, and B. Sadhu, "3D imaging using mmWave 5G signals," 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 147-150, Los Angeles, USA, Aug. 2020.
8. Liu, F., C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, "Joint radar and communication design: Applications, state-of-the-art, and the road ahead," IEEE Transactions on Communications, Vol. 68, No. 6, 3834-3862, Jun. 2020.
doi:10.1109/TCOMM.2020.2973976
9. Ahmed, S. S., A. Schiessl, and L. Schmidt, "A novel fully electronic active real-time imager based on a planar multistatic sparse array," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3567-3576, Dec. 2011.
doi:10.1109/TMTT.2011.2172812
10. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, Vol. 1, No. 1, 6-43, Mar. 2013.
doi:10.1109/MGRS.2013.2248301
11. Imani, M. F., J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, "Review of metasurface antennas for computational microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1860-1875, Mar. 2020.
doi:10.1109/TAP.2020.2968795
12. Zvolensky, T., V. R. Gowda, J. Gollub, D. L. Marks, and D. R. Smith, "W-band sparse imaging system using frequency diverse cavity-fed metasurface antennas," IEEE Access, Vol. 6, 73 659-73 668, 2018.
doi:10.1109/ACCESS.2018.2883402
13. Yurduseven, O., T. Fromenteze, and D. R. Smith, "Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval," IEEE Access, Vol. 6, 14 884-14 894, 2018.
doi:10.1109/ACCESS.2018.2816341
14. Yurduseven, O., T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, "Frequency-diverse computational microwave phaseless imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2808-2811, 2017.
15. Odabasi, H., M. Imani, G. Lipworth, J. Gollub, and D. Smith, "Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures," Progress In Electromagnetics Research B, Vol. 70, 101-112, 2016.
doi:10.2528/PIERB16052801
16. Leino, M. K., J. Ala-Laurinaho, Z. Purisha, S. Särkkä, and V. Viikari, "Millimeter-wave imaging method based on frequency-diverse subarrays," 2019 12th Global Symposium on Millimeter Waves (GSMM), 84-86, Sendai, Japan, May 2019.
doi:10.1109/GSMM.2019.8797670
17. Bioucas-Dias, J. M. and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, Dec. 2007.
doi:10.1109/TIP.2007.909319
18. Yurduseven, O., M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
doi:10.2528/PIER14113002
19. Lipworth, G., A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, "Metamaterial apertures for coherent computational imaging on the physical layer," Journal of the Optical Society of America A, Vol. 30, No. 8, 1603-1612, Aug. 2013.
doi:10.1364/JOSAA.30.001603
20. Zhu, R., T. Zvolensky, and D. Marks, "Millimeter wave computational imaging with 3D printed leaky wave frequency diverse antenna," 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 1, Copenhagen, Denmark, Sep. 2016.
21. Tamminen, A., S.-V. Pälli, J. Ala-Laurinaho, A. Aspelin, A. Oinaanoja, and Z. Taylor, "Holograms with neural-network backend for submillimeter-wave beamforming applications," Proc. SPIE, Vol. 11411, 10 pages, Online Only, Apr. 2020.
22. Gu, X., D. Liu, C. Baks, O. Tageman, B. Sadhu, J. Hallin, L. Rexberg, P. Parida, Y. Kwark, and A. Valdes-Garcia, "Development, implementation, and characterization of a 64-element dual polarized phased-array antenna module for 28-GHz high-speed data communications," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 7, 2975-2984, Jul. 2019.
doi:10.1109/TMTT.2019.2912819
23. Kähkönen, H., J. Ala-Laurinaho, and V. Viikari, "Dual-polarized Ka-band Vivaldi antenna array," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2675-2683, Apr. 2020.
doi:10.1109/TAP.2019.2948561
24. Nafe, A., M. Sayginer, K. Kibaroglu, and G. M. Rebeiz, "2×64-element dual-polarized dual-beam single-aperture 28-GHz phased array with 2×30 Gb/s links for 5G polarization MIMO," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 9, 3872-3884, Sep. 2020.
doi:10.1109/TMTT.2020.2989117