1. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons Press, 2005.
2. Al-Janabi, M. A. and S. K. Kayhan, "Flexible vivaldi antenna based on a fractal design for RF-energy harvesting," Progress In Electromagnetics Research M, Vol. 97, 177-188, 2020.
doi:10.2528/PIERM20073003
3. Shafique, K., B. A. Khawaja, M. D. Khurram, et al. "Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications," IEEE Access, Vol. 6, 30932-30941, 2018.
doi:10.1109/ACCESS.2018.2834392
4. Elwi, T. A., "Printed microwave metamaterial-antenna circuitries on nickel oxide polymerized palm fiber substrates," Nat. Sci. Rep., Vol. 9, No. 2174, 1-14, 2019.
5. Elwi, T. A., "Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications," Inter. Jour. of Elect. & Comm., Vol. 101, No. 9, 1-10, 2019.
6. Elwi, T. A. and B. A. Ahmed, "A fractal metamaterial based printed dipoles on a nickel oxide polymer palm fiber substrate for Wi-Fi applications," Inter. Jour. of Elect. & Comm., Vol. 96, No. 23, 122-129, 2018.
doi:10.1016/j.aeue.2018.09.020
7. Hatem, G. M., A. J. Salim, T. A. Elwi, et al. "Wunderlich curve fractal dipole antenna for dual-band wearable RFID applications," Jou. Eng. and App. Scie., Vol. 14, No. 4, 1093-1099, 2019.
doi:10.36478/jeasci.2019.1093.1099
8. Zeng, M., Z. Li, A. S. Andrenko, Y. Zeng, and H. Z. Tan, "A compact dual-band rectenna for GSM900 and GSM1800 energy harvesting," International Journal of Antennas and Propagation, Vol. 2018, Article ID 4781465, 9 pages, 2018.
9. Elwi, T. A., A. I. Imran, and Y. Alnaiemy, "A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804
10. Elwi, T. A., "A slotted lotus-shaped microstrip antenna based EBG structures," Wirel. Comm. Tech., Vol. 2, No. 1, 1-24, 2018.
11. Imran, A. I. and T. A. Elwi, "A cylindrical wideband slotted patch antenna loaded with frequency selective surface for MRI applications," Eng. Sci. & Tech., an Int. Jou., Vol. 20, No. 3, 990-996, 2017.
doi:10.1016/j.jestch.2017.04.001
12. Nguyen, N. H., T. D. Bui, and A. D. Le, "A novel wideband circularly polarized antenna for RF energy harvesting in wireless sensor nodes," International Journal of Antennas and Propagation, Vol. 2018, Article ID 1692018, 9 pages, 2018.
13. Anguera, J., C. Puente, E. Martínez, et al. "The fractal Hilbert monopole: A two-dimensional wire," Micr. & Opt. Tech. Lett., Vol. 36, No. 2, 102-104, 2003.
doi:10.1002/mop.10687
14. Gala, D., J. Soler, C. Puente, et al. "Miniature microstrip patch antenna loaded with a space-filling line based on the fractal Hilbert curve," Micr. & Opt. Tech. Lett., Vol. 38, No. 4, 311-312, 2003.
doi:10.1002/mop.11046
15. Azad, M. Z. and M. Ali, "A miniaturized Hilbert PIFA for dual-band mobile wireless applications," IEEE Ant. & Wire. Prop. Lett., Vol. 4, No. 3, 59-62, 2005.
doi:10.1109/LAWP.2005.844128
16. Azaro, R., F. Viani, L. Lizzi, et al. "A monopolar quad-band antenna based on a Hilbert self-affine prefractal geometry," IEEE Ant. & Wire. Prop. Lett., Vol. 8, No. 5, 177-180, 2009.
doi:10.1109/LAWP.2008.2001428
17. Puente, C., E. Rozan, and J. Anguera, "Space-filling miniature antennas,", US Pat. 2000, 7,202,822.
18. Mathur, R. and S. Dwari, "Compact planar reconfigurable UWB-MIMO antenna with on-demand worldwide interoperability for microwave access/wireless local area network rejection," IET Microw. Antennas Propag., Vol. 13, 1684-1689, 2019.
doi:10.1049/iet-map.2018.6048
19. Elwi, T. A., Z. A. Al-Hussain, and O. Tawfeeq, "A Hilbert metamaterial printed antenna based on organic substrates for energy harvesting," IET Micr., Ant. & Prop., Vol. 10, No. 2, 1-8, 2019.
20. Vaccaro, S., C. Pereira, J. R. Mosig, et al. "In-flight experiment for combined planar antennas and solar cells (SOLANT)," IET Micr., Ant. & Prop., Vol. 3, No. 8, 1279-1287, 2009.
doi:10.1049/iet-map.2008.0410
21. Vaccaro, S., P. Torres, J. R. Mosig, et al. "Stainless steel slot antenna with integrated solar cells," Electron. Lett., Vol. 36, No. 25, 2059-2060, 2000.
doi:10.1049/el:20001467
22. Al-Adhami, Y. and E. Ercelebi, "A plasmonic monopole antenna array on flexible photovoltaic panels for further use of the green energy harvesting," Progress In Electromagnetics Research M, Vol. 68, 143-152, 2018.
doi:10.2528/PIERM18032104
23. CSTMWS, http://www.cst.com, April 2019.
24. Vaccaro, S., J. R. Mosig, and P. Maagt, "Two advanced solar antenna ``SOLANT'' designs for satellite and terrestrial communications," IEEE Tran. on Ant. & Prop., Vol. 51, No. 8, 110-116, 2003.
25. Al-Adhami, Y. and E. Ercelebi, "Plasmonic metamaterial dipole antenna array circuitry based on flexible solar cell panel for selfpowered wireless systems," Micr. and Opt. Tech. Lett., Vol. 59, No. 9, 2365-2371, 2017.
doi:10.1002/mop.30747
26. HFSS, http://www.ansoft.com, April 2019.
27. https://www.powercastco.com/documentation/p21xxcsr-evb-datasheet/.
28. Elwi, T. A., D. A. Jassim, and H. H. Mohammed, "Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting," Int. J. Commun. Syst., Vol. 1, No. e4305, 1-15, 2020.
29. Okba, A., A. Takacs, and H. Aubert, "Compact flat dipole rectenna for IoT applications," Progress In Electromagnetics Research C, Vol. 87, 39-49, 2018.
doi:10.2528/PIERC18071604