Vol. 101
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-03-22
On the Distortionless of UWB Wearable Hilbert-Shaped Metamaterial Antenna for Low Energy Applications
By
Progress In Electromagnetics Research M, Vol. 101, 219-239, 2021
Abstract
This paper presents a miniaturized antenna-based wearable self-powered wireless systems; the proposed study identifies the possibility to compact a flexible Solant-Rectenna integrated to low energy devices. The proposed system uses the obtained DC currents from RF rectifier and solar panel to recharge batteries. A low-profile Hilbert-shaped metamaterial (MTM) array forming a rectangular patch is conducted to minimize the shadowing effects to 13.3% on the solar panel area. Nevertheless, an Electromagnetic Bandgap (EBG) square pads array is introduced as defects on the ground plane to remove the negative effects, in terms of losses, of the solar panel bus-bar on the antenna performance. Moreover, the proposed EBG ground plane is utilized to isolate the human body from the undesired electromagnetic radiation leakage in addition to minimize the antenna impedance mismatch caused by the proximity to human tissues. For this, the Specific Absorption Rate (SAR) is analysed numerically to assess the feasibility of the proposed EBG layer. The antenna expresses a frequency bandwidth, S11 < -10 dB, from 0.8 GHz up to 10 GHz; moreover, the EBG inclusions increase the front to back ratio to provide the gains of -10 dBi, -4 dBi, 0 dBi at 0.915 GHz, 1.88 GHz, and 2.45 GHz, respectively. Moreover, a SAR reduction is achieved up to 64% down after the EBG layer introduction. In addition, the antenna distortion effect in terms of group delay (Gd) after 3.1 GHz up to 10 GHz is tested; the maximum variation is found to be less than 1ns which shows a linear phase response with distortionless waveforms. Such a feature is found very suitable for UWB applications in modern wireless systems. The antenna performance improvement after introducing the proposed EBG defects is validated experimentally and numerically. The solar panel I-V characteristics are measured after the antenna structure introduction. Next, the solant RF port is connected to a rectifier circuit to realize the rectenna performance port that collects the RF energy at three bands in terms of efficiency spectra. Finally, it is proofed that the proposed Solant-Rectenna offers an excellent, compacted, and flexible candidate for the wearable self-powered devices at different bands.
Citation
Ahmed Imad Imran, Taha Ahmed Elwi, and Ali J. Salim, "On the Distortionless of UWB Wearable Hilbert-Shaped Metamaterial Antenna for Low Energy Applications," Progress In Electromagnetics Research M, Vol. 101, 219-239, 2021.
doi:10.2528/PIERM20113008
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons Press, 2005.

2. Al-Janabi, M. A. and S. K. Kayhan, "Flexible vivaldi antenna based on a fractal design for RF-energy harvesting," Progress In Electromagnetics Research M, Vol. 97, 177-188, 2020.
doi:10.2528/PIERM20073003

3. Shafique, K., B. A. Khawaja, M. D. Khurram, et al. "Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications," IEEE Access, Vol. 6, 30932-30941, 2018.
doi:10.1109/ACCESS.2018.2834392

4. Elwi, T. A., "Printed microwave metamaterial-antenna circuitries on nickel oxide polymerized palm fiber substrates," Nat. Sci. Rep., Vol. 9, No. 2174, 1-14, 2019.

5. Elwi, T. A., "Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications," Inter. Jour. of Elect. & Comm., Vol. 101, No. 9, 1-10, 2019.

6. Elwi, T. A. and B. A. Ahmed, "A fractal metamaterial based printed dipoles on a nickel oxide polymer palm fiber substrate for Wi-Fi applications," Inter. Jour. of Elect. & Comm., Vol. 96, No. 23, 122-129, 2018.
doi:10.1016/j.aeue.2018.09.020

7. Hatem, G. M., A. J. Salim, T. A. Elwi, et al. "Wunderlich curve fractal dipole antenna for dual-band wearable RFID applications," Jou. Eng. and App. Scie., Vol. 14, No. 4, 1093-1099, 2019.
doi:10.36478/jeasci.2019.1093.1099

8. Zeng, M., Z. Li, A. S. Andrenko, Y. Zeng, and H. Z. Tan, "A compact dual-band rectenna for GSM900 and GSM1800 energy harvesting," International Journal of Antennas and Propagation, Vol. 2018, Article ID 4781465, 9 pages, 2018.

9. Elwi, T. A., A. I. Imran, and Y. Alnaiemy, "A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804

10. Elwi, T. A., "A slotted lotus-shaped microstrip antenna based EBG structures," Wirel. Comm. Tech., Vol. 2, No. 1, 1-24, 2018.

11. Imran, A. I. and T. A. Elwi, "A cylindrical wideband slotted patch antenna loaded with frequency selective surface for MRI applications," Eng. Sci. & Tech., an Int. Jou., Vol. 20, No. 3, 990-996, 2017.
doi:10.1016/j.jestch.2017.04.001

12. Nguyen, N. H., T. D. Bui, and A. D. Le, "A novel wideband circularly polarized antenna for RF energy harvesting in wireless sensor nodes," International Journal of Antennas and Propagation, Vol. 2018, Article ID 1692018, 9 pages, 2018.

13. Anguera, J., C. Puente, E. Martínez, et al. "The fractal Hilbert monopole: A two-dimensional wire," Micr. & Opt. Tech. Lett., Vol. 36, No. 2, 102-104, 2003.
doi:10.1002/mop.10687

14. Gala, D., J. Soler, C. Puente, et al. "Miniature microstrip patch antenna loaded with a space-filling line based on the fractal Hilbert curve," Micr. & Opt. Tech. Lett., Vol. 38, No. 4, 311-312, 2003.
doi:10.1002/mop.11046

15. Azad, M. Z. and M. Ali, "A miniaturized Hilbert PIFA for dual-band mobile wireless applications," IEEE Ant. & Wire. Prop. Lett., Vol. 4, No. 3, 59-62, 2005.
doi:10.1109/LAWP.2005.844128

16. Azaro, R., F. Viani, L. Lizzi, et al. "A monopolar quad-band antenna based on a Hilbert self-affine prefractal geometry," IEEE Ant. & Wire. Prop. Lett., Vol. 8, No. 5, 177-180, 2009.
doi:10.1109/LAWP.2008.2001428

17. Puente, C., E. Rozan, and J. Anguera, "Space-filling miniature antennas,", US Pat. 2000, 7,202,822.

18. Mathur, R. and S. Dwari, "Compact planar reconfigurable UWB-MIMO antenna with on-demand worldwide interoperability for microwave access/wireless local area network rejection," IET Microw. Antennas Propag., Vol. 13, 1684-1689, 2019.
doi:10.1049/iet-map.2018.6048

19. Elwi, T. A., Z. A. Al-Hussain, and O. Tawfeeq, "A Hilbert metamaterial printed antenna based on organic substrates for energy harvesting," IET Micr., Ant. & Prop., Vol. 10, No. 2, 1-8, 2019.

20. Vaccaro, S., C. Pereira, J. R. Mosig, et al. "In-flight experiment for combined planar antennas and solar cells (SOLANT)," IET Micr., Ant. & Prop., Vol. 3, No. 8, 1279-1287, 2009.
doi:10.1049/iet-map.2008.0410

21. Vaccaro, S., P. Torres, J. R. Mosig, et al. "Stainless steel slot antenna with integrated solar cells," Electron. Lett., Vol. 36, No. 25, 2059-2060, 2000.
doi:10.1049/el:20001467

22. Al-Adhami, Y. and E. Ercelebi, "A plasmonic monopole antenna array on flexible photovoltaic panels for further use of the green energy harvesting," Progress In Electromagnetics Research M, Vol. 68, 143-152, 2018.
doi:10.2528/PIERM18032104

23. CSTMWS, http://www.cst.com, April 2019.

24. Vaccaro, S., J. R. Mosig, and P. Maagt, "Two advanced solar antenna ``SOLANT'' designs for satellite and terrestrial communications," IEEE Tran. on Ant. & Prop., Vol. 51, No. 8, 110-116, 2003.

25. Al-Adhami, Y. and E. Ercelebi, "Plasmonic metamaterial dipole antenna array circuitry based on flexible solar cell panel for selfpowered wireless systems," Micr. and Opt. Tech. Lett., Vol. 59, No. 9, 2365-2371, 2017.
doi:10.1002/mop.30747

26. HFSS, http://www.ansoft.com, April 2019.

27. https://www.powercastco.com/documentation/p21xxcsr-evb-datasheet/.

28. Elwi, T. A., D. A. Jassim, and H. H. Mohammed, "Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting," Int. J. Commun. Syst., Vol. 1, No. e4305, 1-15, 2020.

29. Okba, A., A. Takacs, and H. Aubert, "Compact flat dipole rectenna for IoT applications," Progress In Electromagnetics Research C, Vol. 87, 39-49, 2018.
doi:10.2528/PIERC18071604