Vol. 96
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-02-09
Wideband Harmonic Suppressed Compact Rat-Race Coupler Using Triple Stub m -Shape Unit
By
Progress In Electromagnetics Research Letters, Vol. 96, 81-90, 2021
Abstract
A design of a compact wideband harmonic suppressed rat-race coupler (RRC) is presented in this paper. The present coupler is obtained by replacing each quarter wave length transmission line of a conventional double section rat-race coupler with a triple stub M-shape unit. The M-shape unit with 3 stubs is used to enhance the bandwidth, suppress the harmonics, and reduce the size of the coupler. Design guidelines are established using the lossless transmission line model. Theoretical predictions are verified by fabricating a prototype coupler. The proposed double section RRC provides harmonic suppression up to seventh of operating frequency and 62.4% size reduction with wide bandwidth, which is useful for wireless communication systems.
Citation
Vuppuloori Ravi Reddy, Vamsi Krishna Velidi, and Bhima Prabhakara Rao, "Wideband Harmonic Suppressed Compact Rat-Race Coupler Using Triple Stub m -Shape Unit," Progress In Electromagnetics Research Letters, Vol. 96, 81-90, 2021.
doi:10.2528/PIERL20113002
References

1. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2012.

2. Velidi, V. K., D. K. Pandey, and S. Sanyal, "Microstrip rat-race couplers with pre determined miniaturization and harmonic suppression," Wiley Microwave and Optical Technology Letters, Vol. 52, No. 1, 30-34, January 2010.
doi:10.1002/mop.24832

3. Velidi, V. K., M. K. Mandal, and A. Bhattacharya, "Uniplanar harmonic suppressed compact rat-race couplers," Wiley Microwave and Optical Technology Letters, Vol. 50, No. 11, 2812-2814, November 2008.
doi:10.1002/mop.23840

4. Mondal, P. and A. Chakrabarty, "Design of miniaturised branch line and rat-race hybrid couplers with harmonics suppression," IET Microwaves, Antennas & Propagation, Vol. 3, No. 1, 109-116, 2009.
doi:10.1049/iet-map:20070202

5. Gruszczynski, S. and K. Wincza, "Broadband rat-race couplers with coupled-line section and impedance transformers," IEEE Microwave Wireless Components Letters, Vol. 22, No. 1, 22-24, January 2012.
doi:10.1109/LMWC.2011.2177649

6. Kim, Y.-G., S.-Y. Song, and K. W. Kim, "A compact wideband ring coupler utilizing a pair of transitions for phase inversion," IEEE Microwave Wireless Components Letters, Vol. 21, No. 1, 25-27, January 2011.
doi:10.1109/LMWC.2010.2089438

7. Sorocki, J., I. Piekarz, K. Wincza, and S. Gruszczynski, "Bandwidth improvement of rat-race couplers having left-handed transmission line sections," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 24, No. 3, 341-347, May 2014.
doi:10.1002/mmce.20766

8. Taravati, S., "Miniaturized wide-band rat-race coupler," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, No. 6, 675-681, November 2013.
doi:10.1002/mmce.20703

9. Abbosh, A. M., "Planar out-of-phase power divider/combiner for wideband high power microwave applications," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, 465-471, August 2013.

10. Mung, S. W. Y. and W. S. Chan, "Wideband microstrip rat-race hybrid with via-swap phase inverter," Electronic Letters, Vol. 50, No. 2, 96-98, January 2014.
doi:10.1049/el.2013.3234

11. Clenet, M., A. Sharaiha, and Y. M. M. Antar, "A compact wide-band rat-race hybrid using microstrip lines," IEEE Microwave Wireless Components Letters, Vol. 19, No. 4, 191-193, April 2009.

12. Kumar, K. V. P. and S. S. Karthikeyan, "Highly compact wideband double-section rat-race hybrid with harmonic suppression using series and shunt stepped impedance transmission line," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 4, 1-7, Cambridge University Press and the European Microwave Association, 2016.

13. Riaan, F. and J. Johan, "A broad band 180◦ hybrid ring coupler using a microstrip-to-slotline inverter," Wiley Microwave and Optical Technology Letters, Vol. 57, 2164-2168, 2015.
doi:10.1002/mop.29299