Vol. 100
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-28
Quasi-TEM Analysis of Symmetrical Shielded Broadside-Coupled Microstrip Lines
By
Progress In Electromagnetics Research M, Vol. 100, 213-223, 2021
Abstract
In this work, a numerical quasi-static approach is proposed to efficiently analyze symmetrical shielded broadside-coupled microstrip line (SBCML) structures. Based on the modified least squares boundary residual method combined with a variational technique, this approach allows accurate computation of the electrical/geometrical parameters of different SBCML configurations. The errors for the quasi-TEM electrical parameters range are less than 4%. The proposed technique was demonstrated through successful comparison with data from published works and results obtained from commercial EM simulators like CST-EMS and COMSOL.
Citation
Ali Bououden, Mohamed Lahdi Riabi, Abdelhalim A. Saadi, and Mustapha Yagoub, "Quasi-TEM Analysis of Symmetrical Shielded Broadside-Coupled Microstrip Lines," Progress In Electromagnetics Research M, Vol. 100, 213-223, 2021.
doi:10.2528/PIERM20112707
References

1. Grys, D. B., R. Storch, and T. Musch, "A multisection ultra wideband directional coupler in multilayer broadside coupled stripline technology," IEEE Microwave Conf., 39-42, Bochum, Germany, 2016.

2. Kim, I. B., S. K. Kim, W. Mohyuddin, H. C. Choi, and K. W. Kim, "Design of wideband directional couplers using three types of broadside coupled-lines," IEEE Int. Symp. on Antennas and Propag., 932-933, Okinawa, Japan, 2016.

3. Kim, S. G. and K. Chang, "Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 9, 2148-2152, 2004.
doi:10.1109/TMTT.2004.834165

4. Moghaddam, E. S. and A. Ahmadi, "180˚ hybrid using a novel planar balun on suspended substrate for beam forming network applications," Int. J. RF Microw. Comput.-Aided Eng., Vol. 9, e22280, 2020.

5. Huang, K. F. and C. K. Tzuang, "Characteristics and design of broadside-coupled transmission line at a higher order leaky mode," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 440-447, 2003.
doi:10.1109/TMTT.2002.807839

6. Lin, S., H. Cui, L.Wu, W.Wang, and X. Sun, "Design of broadside-coupled parallel line millimetre-wave filters by standard 0.18-μm complimentary metal oxide semiconductor technology," IET Microw. Antennas Propag., Vol. 6, No. 1, 72-78, 2012.
doi:10.1049/iet-map.2011.0024

7. Abbosh, A. M., "Ultra-wideband phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1935-1941, 2007.
doi:10.1109/TMTT.2007.904051

8. Winslow, T. A., "A novel broadside coupler model for MMIC impedance transformer design," IEEE 41st European Microwave Conf., 309-312, Manchester, UK, 2011.

9. Wong, M. F., V. F. Hanna, O. Picon, and H. Baudrand, "Analysis and design of slot-coupled directional couplers between double-sided substrate microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 12, 2123-2129, 1991.
doi:10.1109/22.106554

10. Abbosh, A. M., "Analytical closed-form solutions for different configurations of parallel-coupled microstrip lines," IET Microw. Antennas Propag., Vol. 3, No. 1, 137-147, 2009.
doi:10.1049/iet-map:20070308

11. Zhu, N. H., W. Qiu, Y.-B. Pun, and P.-S. Chung, "Analysis of two-layer planar transmission lines with the point matching method," Int. J. Eletron., Vol. 80, No. 1, 99-105, 1996.
doi:10.1080/002072196137624

12. Übeyli, E. D. and I. Güler, "Adaptive neuro-fuzzy inference system to compute quasi-TEM characteristic parameters of microshield lines with practical cavity sidewall profiles," Neurocomputing, Vol. 70, No. 1-3, 296-304, 2006.
doi:10.1016/j.neucom.2006.01.002

13. Zitouni, A., H. Bourdoucen, and T. Nait Djoudi, "Quasi-static MoL-based approach for the analysis of multilayer transmission line structures," The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 10, No. 4, 209-216, 1997.
doi:10.1002/(SICI)1099-1204(199707)10:4<209::AID-JNM268>3.0.CO;2-I

14. Yamashita, E. and K. Atsuki, "Strip line with rectangular outer conductor and three dielectric layers," IEEE Trans. Microw. Theory Tech., Vol. 18, No. 5, 238-244, 1970.
doi:10.1109/TMTT.1970.1127205

15. Liu, J., J. Yang, and A. U. Zaman, "Analytical solutions to characteristic impedance and losses of inverted microstrip gap waveguide based on variational method," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 12, 7049-7057, 2018.
doi:10.1109/TMTT.2018.2871180

16. Pantic-Tanner, Z., G. Mavronikolas, and R. Mittra, "A numerical absorbing boundary condition for quasi-TEM analysis of microwave transmission lines using the finite-element method," Microw. Opt. Technol. Lett., Vol. 9, No. 3, 134-136, 1995.
doi:10.1002/mop.4650090308

17. Musa, S. M. and M. N. Sadiku, "Finite element approach of shielded, suspended and inverted microstrip lines," Bull. Electr. Eng. Inform., Vol. 2, No. 1, 1-10, 2013.

18. Xiao, F., M. Norgren, and S. He, "Quasi-TEM approach of coupled-microstrip lines and its application to the analysis of microstrip filters," Int. J. RF Microw. Comput.-Aided Eng., Vol. 22, No. 1, 131-139, 2012.
doi:10.1002/mmce.20592

19. Tran, M. and C. Nguyen, "Modified broadside-coupled microstrip lines suitable for MIC and MMIC applications and a new class of broadside-coupled band-pass filters," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 8, 1336-1342, 1993.
doi:10.1109/22.241672

20. Khalaj-Amirhosseini, M., "Determination of capacitance and conductance matrices of lossy shielded coupled microstrip transmission lines," Progress In Electromagnetics Research, Vol. 50, 267-278, 2005.
doi:10.2528/PIER04061601

21. Tomar, R., Y. M. Antar, and P. Bhartia, "Computer-aided-design (CAD) of suspended-substrate microstrips: An overview," Int. J. RF Microw. Comput.-Aided Eng., Vol. 15, No. 1, 44-55, 2005.
doi:10.1002/mmce.20050

22. Riabi, M. L., M. Ahmadpanah, H. Benzina, H. Baudrand, and V. FouadHanna, "Performance of the MLSBR using efficient weighting functions for planar structures," IET Microw. Antennas Propag., Vol. 142, No. 4, 364-368, 1995.
doi:10.1049/ip-map:19952004

23. Sakli, H., H. Benzina, T. Aguli, and J.-W. Tao, "A rigorous study of some planar structures with longitudinally magnetized ferrite by a modified LSBR method," International Journal of Microwave and Optical Technology, Vol. 4, 358-367, 2009.

24. Horno, M., F. L. Mesa, F. Medina, and R. Marques, "Quasi-TEM analysis of multilayered, multiconductor coplanar structures with dielectric and magnetic anisotropy including substrate losses," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1059-1068, 1990.
doi:10.1109/22.57331

25. Bahl, I. J. and P. Bhartia, "Analysis of broadside coupled microstriplines," Arch. Elek. Ubertragung., Vol. 34, No. 5, 223-226, May 1980.

26. Bhartia, P. and P. Pramanick, "Computer-aided design models for broadside-coupled striplines and millimeter-wave suspended substrate microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 3, No. 11, 1476-1481, 1988.
doi:10.1109/22.8910

27. Kumar, R., "Design model for broadside-coupled suspended substrate stripline for microwave and millimeter-wave applications," Microw. Opt. Technol. Lett., Vol. 42, No. 4, 328-331, 2004.
doi:10.1002/mop.20293

28. Musa, S. M. and M. N. Sadiku, "Modeling of shielded broadside-coupled substrate striplines," Microw. Opt. Technol. Lett., Vol. 51, No. 1, 9-13, 2009.
doi:10.1002/mop.23960

29. Bhat, B. and S. K. Koul, Stripline Like Transmission Lines for Microwave Integrated Circuits, 332-961, Wiley, 1989.

30. Staszek, K., K. Wincza, and S. Gruszczynski, "Rigorous approach for design of differential coupled-line directional couplers applicable in integrated circuits and substrate-embedded networks," Nature Scientific Reports, Vol. 6, 25071, 2016.
doi:10.1038/srep25071

31. https://doc.comsol.com/5.4/doc/com.comsol.help.acdc/ACDCModuleUsersGuide.pdf.