1. Rao, K. N. S., "GAGAN - The Indian satellite based augmentation system," Indian Journal of Radio & Space Physics, Vol. 36, 293-302, Aug. 2007.
2. Hager, B. H., R. W. King, and M. H. Murray, Measurement of Crustal Deformation Using the Global Positioning System, Vol. 19, 351, Annual Review of Earth and Planetary Sciences, 1991.
3. Sun, Y., R. Xue, D. Zhao, and D. Wang, "Radio frequency compatibility evaluation of S band navigation signals for future beidou," Sensors (Switzerland), Vol. 17, No. 5, 1039, May 2017, doi: 10.3390/s17051039.
doi:10.3390/s17051039
4. Zhong, J., J. Lei, X. Dou, and X. Yue, "Assessment of vertical TEC mapping functions for space-based GNSS observations," GPS Solut., Vol. 20, No. 3, 353-362, Jul. 2016, doi: 10.1007/s10291-015-0444-6.
doi:10.1007/s10291-015-0444-6
5. Ratnam, D. V., T. R. Vishnu, and P. B. S. Harsha, "Ionospheric gradients estimation and analysis of S-band navigation signals for NAVIC system," IEEE Access, Vol. 6, 66954-66962, 2018, doi: 10.1109/ACCESS.2018.2876795.
doi:10.1109/ACCESS.2018.2876795
6. Schaer, S., "Mapping and predicting the earth's ionosphere using the Global Positioning System," Diss. Astron. Inst., 205, 1999, [online], available: https://www.researchgate.net/publication/252260542_Mapping_and_Predicting_the_Earth's_Ionos-phere_Using_the_Global_Positioning_System.
7. Radicella, S. M., B. Nava, P. Coïsson, L. Kersley, and G. J. Bailey, "Effects of gradients of the electron density on Earth-space communications," Ann. Geophys., Vol. 47, No. 2-3 suppl., 1227-1246, 2004, doi: 10.4401/ag-3296.
8. Bates, D. R., The Propagation of Radio Waves, Vol. 34, No. 6, K. G. Budden Cambridge University Press, 1985.
9. Abe, O. E., X. Otero Villamide, C. Paparini, S. M. Radicella, and B. Nava, "Analysis of a grid ionospheric vertical delay and its bounding errors overWest African sub-Saharan region," J. Atmos. Solar-Terrestrial Phys., Vol. 154, 67-74, Feb. 2017, doi: 10.1016/j.jastp.2016.12.015.
doi:10.1016/j.jastp.2016.12.015
10. Hernández-Pajares, M., et al. "The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques," J. Geod., Vol. 85, No. 12, 887-907, 2011, doi: 10.1007/s00190-011-0508-5.
doi:10.1007/s00190-011-0508-5
11. Jiang, H., Z. Wang, J. An, J. Liu, N. Wang, and H. Li, "Influence of spatial gradients on ionospheric mapping using thin layer models," GPS Solut., Vol. 22, No. 1, Jan. 2018, doi: 10.1007/s10291-017-0671-0.
doi:10.1007/s10291-017-0671-0
12. Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge, "A global mapping technique for GPS-derived ionospheric total electron content measurements," Radio Sci., Vol. 33, No. 3, 565-582, 1998, doi: 10.1029/97RS02707.
doi:10.1029/97RS02707
13. Klobuchar, J. A., "Ionospheric time-delay algorithm for single-frequency GPS users," IEEE Trans. Aerosp. Electron. Syst., Vol. 23, No. 3, 325-331, 1987, doi: 10.1109/TAES.1987.310829.
doi:10.1109/TAES.1987.310829
14. Walter, T., et al. "Robust detection of ionospheric irregularities," Navig. J. Inst. Navig., Vol. 48, No. 2, 89-100, 2001, doi: 10.1002/j.2161-4296.2001.tb00231.x.
doi:10.1002/j.2161-4296.2001.tb00231.x
15. Ruffini, G., A. Flores, and A. Rius, "GPS tomography of the ionospheric electron content with a correlation functional," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 1, 143-153, 1998, doi: 10.1109/36.655324.
doi:10.1109/36.655324
16. Wen, D., Y. Yuan, J. Ou, K. Zhang, and K. Liu, "A hybrid reconstruction algorithm for 3-D ionospheric tomography," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1733-1739, 2008, doi: 10.1109/TGRS.2008.916466.
doi:10.1109/TGRS.2008.916466
17. Shukla, A. K., M. R. Sivaraman, and K. Bandyopadhyay, "A comparison study of voxel based multi- and two-layer ionospheric tomography models over the indian region using GPS data," Int. J. Remote Sens., Vol. 31, No. 10, 2535-2549, 2010, doi: 10.1080/01431160903019296.
doi:10.1080/01431160903019296
18. Shukla, A. K., S. Das, N. Nagori, M. R. Sivaraman, and K. Bandyopadhyay, "Two-shell ionospheric model for Indian region: A novel approach," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 8, 2407-2412, 2009, doi: 10.1109/TGRS.2009.2017520.
doi:10.1109/TGRS.2009.2017520
19. Komjathy, A., et al. "A new ionospheric model for wide area differential GPS?: The multiple shell approach," Network, 28-30, Jan. 2002.
20. Norsuzila, Y., M. Abdullah, and M. Ismail, "Determination of GPS total electron content using Single Layer Model (SLM) ionospheric mapping function," IJCSNS Int. J. Comput. Sci. Netw. Secur., Vol. 8, No. 9, 154-160, 2008, [online], available: http://paper.ijcsns.org/07_book/200809/20080922.pdf.
21. Tancredi, U., A. Renga, and M. Grassi, "Geometric total electron content models for topside ionospheric sounding," EESMS 2014 - 2014 IEEE Work. Environ. Energy Struct. Monit. Syst. Proc., 163-168, 2014, doi: 10.1109/EESMS.2014.6923285.
22. Niranjan, K., B. Srivani, S. Gopikrishna, and P. V. S. Rama Rao, "Spatial distribution of ionization in the equatorial and low-latitude ionosphere of the Indian sector and its effect on the pierce point altitude for GPS applications during low solar activity periods," J. Geophys. Res. Sp. Phys., Vol. 112, No. 5, 1-15, 2007, doi: 10.1029/2006JA011989.
23. Xiang, Y. and Y. Gao, "An enhanced mapping function with ionospheric varying height," Remote Sens., Vol. 11, No. 12, 1497, Jun. 2019, doi: 10.3390/rs11121497.
doi:10.3390/rs11121497
24. Lanyi, G. E. and T. Roth, "A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations," Radio Sci., Vol. 23, No. 4, 483-492, 1988, doi: 10.1029/RS023i004p00483.
doi:10.1029/RS023i004p00483
25. Hernàndez-Pajares , M., J. M. Juan, J. Sanz, and M. Garcia-Fernàndez, "Towards a more realistic ionospheric mapping function," XXVIII URSI Gen. Assem., Vol. 2002, 2002-2005, 2005.
26. Brunini, C., E. Camilion, and F. Azpilicueta, "Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model," J. Geod., Vol. 85, No. 9, 637-645, 2011, doi: 10.1007/s00190-011-0470-2.
doi:10.1007/s00190-011-0470-2
27. Prasad, S. N. V. S., P. V. S. Rama Rao, D. S. V. V. D. Prasad, K. Venkatesh, and K. Niranjan, "On the variabilities of the Total Electron Content (TEC) over the Indian low latitude sector," Adv. Sp. Res., Vol. 49, No. 5, 898-913, 2012, doi: 10.1016/j.asr.2011.12.020.
doi:10.1016/j.asr.2011.12.020
28. Acharya, R., et al. "Ionospheric studies for the implementation of GAGAN," Indian J. Radio Sp. Phys., Vol. 36, No. 5, 394-404, 2007.
29. Ratnam, D. V., J. R. K. K. Dabbakuti, and S. Sunda, "Modeling of ionospheric time delays based on a multishell spherical harmonics function approach," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 10, No. 12, 5784-5790, 2017, doi: 10.1109/JSTARS.2017.2743695.
doi:10.1109/JSTARS.2017.2743695
30. Smith, D. A., E. A. Araujo-Pradere, C. Minter, and T. Fuller-Rowell, "A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere," Radio Sci., Vol. 43, No. 6, n/a-n/a, 2008, doi: 10.1029/2007rs003769.
doi:10.1029/2007RS003769
31. Maruyama, T., K. Hozumi, and G. Ma, "Ionospheric total electron content derived from gnss signals by double thin-shell model near the magnetic equator and implication in the meridional wind," 2019 Russ. Open Conf. Radio Wave Propagation, RWP 2019 - Proc., Vol. 1, No. 3, 139-140, 2019, doi: 10.1109/RWP.2019.8810250.
doi:10.1109/RWP.2019.8810250
32. Sinha, S., R. Mathur, S. C. Bharadwaj, A. Vidyarthi, B. S. Jassal, and A. K. Shukla, "Estimation and smoothing of tec from navic dual frequency data," 2018 4th Int. Conf. Comput. Commun. Autom. ICCCA 2018, 1-5, 2018, doi: 10.1109/CCAA.2018.8777665.
33. Bhardwaj, S. C., A. Vidyarthi, B. S. Jassal, and A. K. Shukla, "Study of temporal variation of vertical TEC using NavIC data," 2017 International Conference on Emerging Trends in Computing and Communication Technologies, ICETCCT 2017, Vol. 2018-Janua, 1-5, 2018, doi: 10.1109/ICETCCT.2017.8280317.
34. Zaminpardaz, S., P. J. G. Teunissen, and N. Nadarajah, "IRNSS stand-alone positioning: First results in Australia," J. Spat. Sci., Vol. 61, No. 1, 5-27, 2016, doi: 10.1080/14498596.2016.1142398.
doi:10.1080/14498596.2016.1142398
35. Bilitza, D., et al. "International reference ionosphere 2016: From ionospheric climate to real-time weather predictions," Sp. Weather, Vol. 15, No. 2, 418-429, 2017, doi: 10.1002/2016SW001593.
doi:10.1002/2016SW001593
36. Venkatesh, K., P. V. S. R. Rao, D. S. V. V. D. Prasad, K. Niranjan, and P. L. Saranya, "Study of TEC, slab-thickness and neutral temperature of the thermosphere in the Indian low latitude sector," Ann. Geophys., Vol. 29, No. 9, 1635-1645, 2011, doi: 10.5194/angeo-29-1635-2011.
doi:10.5194/angeo-29-1635-2011
37. Bagiya, M. S., H. P. Joshi, K. N. Iyer, M. Aggarwal, S. Ravindran, and B. M. Pathan, "TEC variations during low solar activity period (2005-2007) near the Equatorial Ionospheric Anomaly Crest region in India," Ann. Geophys., Vol. 27, 1047-1057, 2009.
doi:10.5194/angeo-27-1047-2009
38. Bhardwaj, S. C., A. Vidyarthi, B. S. Jassal, and A. K. Shukla, "Estimation of temporal variability of differential instrumental biases of NavIC satellites and receiver using Kalman filter," Radio Sci., Jun. 2020, doi: 10.1029/2019RS006886.
39. Sunehra, D., "TEC and instrumental bias estimation of GAGAN station using Kalman filter and SCORE algorithm," Positioning, Vol. 7, No. 1, 41-50, 2016, doi: 10.4236/pos.2016.71004.
doi:10.4236/pos.2016.71004
40. Kashcheyev, A., B. Nava, and S. M. Radicella, "Estimation of higher-order ionospheric errors in GNSS positioning using a realistic 3-D electron density model," Radio Sci., Vol. 47, No. 4, 1-7, 2012, doi: 10.1029/2011RS004976.
doi:10.1029/2011RS004976