Vol. 100
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-02
Effect of the Nonlinearity on Optical Properties of One-Dimensional Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 100, 69-79, 2021
Abstract
Nonlinear effect on optical properties of one-dimensional photonic crystal (1D-PC) of the type (HL)n (LH)m (LLHH)k was investigated. It is an asymmetric hybrid Fabry-Perot resonator type of 1D-PC structure which is composed of linear (H layers) and nonlinear (L layers) materials. The linear and nonlinear transmission spectra are graphically illustrated using a numerical approach based on the Transfer Matrix Method (TMM). Results show the appearance of a Perfect Transmission Peak (PTP) in the photonic band gap which makes the structure constitute a monochromatic filter. By analyzing this PTP it is shown that the Full-Width at Half-Maximum (FWHM) depends not only on the number of symmetry layers of the studied 1D-PC but also on the refractive index of the nonlinear layers. The change of the refractive index (Kerr effect) causes a dynamically shift in the band gap including the resonance peak. As a result, such a structure has the potential to be used for designing optical filters and nonlinear optical devices.
Citation
Oumayma Habli, Jihene Zaghdoudi, and Mounir Kanzari, "Effect of the Nonlinearity on Optical Properties of One-Dimensional Photonic Crystal," Progress In Electromagnetics Research M, Vol. 100, 69-79, 2021.
doi:10.2528/PIERM20111203
References

1. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors," Optical Materials, Vol. 64, 147-151, 2017.
doi:10.1016/j.optmat.2016.12.005

2. Soltani, O., J. Zaghdoudi, and M. Kanzari, "Analysis of transmittance properties in 1D hybrid dielectric photonic crystal containing superconducting thin films," Physica B: Condensed Matter, Vol. 538, 62-69, 2018.
doi:10.1016/j.physb.2018.03.017

3. Asmi, R., N. Ben Ali, and M. Kanzari, "Numerical investigation of light localization in generalized Thue-Morse one-dimensional photonic crystal," Journal of Photonics for Energy, Vol. 6, 034501, 2016.
doi:10.1117/1.JPE.6.034501

4. Trabelsi, Y., N. Ben Ali, Y. Bouazzi, and M. Kanzari, "Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures," Photonic Sensors, Vol. 3, 246-255, 2013.
doi:10.1007/s13320-013-0114-7

5. Lu, T. W., C. C. Wu, C. Wang, and P. T. Lee, "Compressible 1D photonic crystal nanolasers with wide wavelength tuning," Optics Letters, Vol. 42, 2267-2270, 2017.
doi:10.1364/OL.42.002267

6. Soltani, O., J. Zaghdoudi, and M. Kanzari, "High quality factor polychromatic filters based on hybrid photonic structures," Chinese Journal of Physics, Vol. 56, 2479-2487, 2018.
doi:10.1016/j.cjph.2018.05.025

7. Jena, S., R. B. Tokas, S. Thakur, and D. V. Udupa, "Tunable mirrors and filters in 1D photonic crystals containing polymers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113627, 2019.
doi:10.1016/j.physe.2019.113627

8. Habli, O., Y. Bouazzi, and M. Kanzari, "Gas sensing using one-dimensional photonic crystal nanoresonators," Progress In Electromagnetics Research, Vol. 92, 251-263, 2019.
doi:10.2528/PIERC19011106

9. Patermò, G. M., L. Moscardi, S. Donini, D. Ariodanti, I. Kriegel, M. Zani, E. Parisini, F. Scotognella, and G. Lanzani, "Hybrid one-dimensional plasmonic-photonic crystals for optical detection of bacterial contaminants," The Journal of Physical Chemistry Letters, Vol. 10, 4980-4986, 2019.
doi:10.1021/acs.jpclett.9b01612

10. Konopsky, V. N., E. V. Alieva, S. Y. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, "Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals," Light: Science & Applications, Vol. 5, e16168-e16168, 2016.
doi:10.1038/lsa.2016.168

11. McMillan, J. F., M. Yu, D. L. Kwong, and C. W. Wong, "Observation of four-wave mixing in slow-light silicon photonic crystal waveguides," Optics Express, Vol. 18, 15484-15497, 2010.
doi:10.1364/OE.18.015484

12. Zhao, D., Z. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, "Optical bistability in defective photonic multilayers doped by graphene," Optical and Quantum Electronics, Vol. 49, 163, 2017.
doi:10.1007/s11082-017-0999-2

13. Fernando, M. G. and K. Wijewardena Gamalath, "Nonlinear optical properties of photonic crystals," World Scientific News, Vol. 97, 1-27, 2018.

14. Boyd, R. W., Nonlinear Optics, Academic Press, 2019.

15. Soon, B. Y., W. Haus, M. Scalora, and C. Sibilia, "One-dimensional photonic crystal optical limiter," Optics Express, Vol. 11, 2007-2018, 2003.
doi:10.1364/OE.11.002007

16. Koroteev, N. I., S. A. Magnitskii, A. V. Tarasishin, et al. "Compression of ultrashort light pulses in photonic crystals: When envelopes cease to be slow," Optics Commun., Vol. 159, 191-202, 1999.
doi:10.1016/S0030-4018(98)00571-9

17. Shi, W., M. Shi, and X. Ma, "Tunable CdS/TiO2 all-optical switches with defect layers," Emerging Materials Research, Vol. 8, 123-126, 2019.
doi:10.1680/jemmr.16.00133

18. Zohrabi, R. and A. Namdar, "Perfect tunable all-optical diode based on periodic photonic crystal grand graded structures," Journal of Optical Communications, Vol. 40, 187-193, 2019.
doi:10.1515/joc-2017-0080

19. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/AlGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102

20. Samuel, E. P. and D. S. Patil, "Effect of aluminum mole fraction and well width on the probability density spreading in GaN/AlGaN quantum well," Optoelectronics and Advanced Materials-Rapid Communications, Vol. 8, 394, 2007.

21. Talele, K., E. P. Samuel, and D. S. Patil, "Investigation of near field intensity in GaN MQW in 300-375 nanometer wavelength ranges," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1122-1130, 2008.
doi:10.1163/156939308784158823

22. Abelès, F., "Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés-Application aux couches minces," Annales de Physique. EDP Sciences, Vol. 12, 596-640, 1950.
doi:10.1051/anphys/195012050596

23. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors," Optical Materials, Vol. 64, 147-151, 2017.
doi:10.1016/j.optmat.2016.12.005

24. Trabelsi, Y., N. Ben Ali, and M. Kanzari, "Tunable narrowband optical filters using superconductor/dielectric generalized Thue-Morse photonic crystals," Microelectronic Engineering, Vol. 213, 41-46, 2019.
doi:10.1016/j.mee.2019.04.016

25. Zaghdoudi, J. and M. Kanzari, "One-dimensional photonic crystal filter using a gradient-index layer," Optik, Vol. 160, 189-196, 2018.
doi:10.1016/j.ijleo.2018.01.129

26. Zaghdoudi, J., M. Kanzari, and B. Rezig, "Design of omnidirectional asymmetrical high reflectors for optical telecommunication wavelengths," The European Physical Journal B - Condensed Matter and Complex Systems, Vol. 42, 181-186, 2004.
doi:10.1140/epjb/e2004-00370-y

27. Zhukovsky, S. V. and A. G. Smirnov, "All-optical diode action in asymmetric nonlinear photonic multilayers with perfect transmission resonances," Physical Review A, Vol. 83, 023818, 2011.
doi:10.1103/PhysRevA.83.023818

28. Jamshidi-Ghaleh, K., Z. Safari, and R. Tanavar, "Enhancement of photonic crystal all-optical diode efficiency with a subwavelength layer," Acta Physica Polonica, A, Vol. 123, 212-214, 2013.
doi:10.12693/APhysPolA.123.212

29. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Study of optical responses in hybrid symmetrical quasi-periodic photonic crystals," Progress In Electromagnetics Research, Vol. 46, 29-37, 2016.
doi:10.2528/PIERM15112902

30. Peng, R. W., X. Q. Huang, F. Qiu, et al. "Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers," Applied Physics Letters, Vol. 80, 3063-3065, 2002.
doi:10.1063/1.1468895

31. Mauriz, P. W., M. S. Vasconcelos, and E. L. Albuquerque, "Optical transmission spectra in symmetrical Fibonacci photonic multilayers," Physics Letters A, Vol. 373, 496-500, 2009.
doi:10.1016/j.physleta.2008.11.041

32. Entezar, S. R. and R. Vatannejad, "1D graded thickness nonlinear structure as an optical diode," Journal of Nonlinear Optical Physics & Materials, Vol. 25, 1650030, 2016.
doi:10.1142/S0218863516500302

33. Zhukovsky, S. V., "Perfect transmission and highly asymmetric light localization in photonic multilayers," Physical Review A, Vol. 81, 053808, 2010.
doi:10.1103/PhysRevA.81.053808

34. Namdar, A. and F. Ebadi-Garjan, "All-optical diode action in quasiperiodic fibonacci nanostructures," Acta Physica Polonica A, Vol. 123, 45-47, 2013.
doi:10.12693/APhysPolA.123.45

35. Grigoriev, V. V. and F. Biancalana, "Bistability and stationary gap solitons in quasiperiodic photonic crystals based on Thue-Morse sequence," Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, 285-290, 2010.
doi:10.1016/j.photonics.2010.05.002

36. Maksymov, I. S., L. F. Marsal, and J. Pallares, "Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals," Optics Communications, Vol. 239, 213-222, 2004.
doi:10.1016/j.optcom.2004.05.022

37. Bhargava, A. and B. Suthar, "Optical switching in kerr nonlinear chalcogenide photonic crystal," Journal of Ovonic Research, Vol. 5, 2009.

38. Meng, Z. M., Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, "Design of high-Q silicon-polymer hybrid photonic crystal nanobeammicrocavities for low-power and ultrafast all-optical switching," Photonics and Nanostructures - Fundamentals and Applications, Vol. 12, 83-92, 2014.
doi:10.1016/j.photonics.2013.08.003

39. Scalora, M., J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Physical review Letters, Vol. 73, 1368, 1994.
doi:10.1103/PhysRevLett.73.1368

40. Kumar, A., V. Kumar, B. Suthar, et al. "Nonlinear transmission and reflection characteristics of plasma/polystyrene one dimensional photonic crystal," Optik, Vol. 125, 393-396, 2014.
doi:10.1016/j.ijleo.2013.06.090

41. Moslemi, F. and K. Jamshidi-Ghaleh, "Electrically tunable optical bistability based on one-dimensional photonic crystals with nonlinear nanocomposite materials," Journal of Applied Physics, Vol. 119, 093101, 2016.
doi:10.1063/1.4942866

42. Tran, P., "Optical switching with a nonlinear photonic crystal: A numerical study," Optics Letters, Vol. 21, 1138-1140, 1996.
doi:10.1364/OL.21.001138