Vol. 100
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-20
Design of Filtering Coupled-Line Trans-Directional Coupler with Broadband Bandpass Response
By
Progress In Electromagnetics Research M, Vol. 100, 163-173, 2021
Abstract
In the paper, a filtering coupled-line trans-directional (CL-TRD) coupler with broadband bandpass response is presented for the first time. It is composed of three sections of coupled lines, four transmission lines and four shunt stubs. Design equations of the proposed filtering CL-TRD coupler are derived using the even- and odd-mode analysis. For demonstration, a prototype operating at 2.4 GHz is designed, fabricated and measured. Under the criterion of |S11| < -10 dB, the measured bandpass bandwidth is 41.7 %. In this bandwidth, the output port phase difference is within 90° ± 5°. Besides, two stopbands (0.91 GHz ~ 1.89 GHz and 3.36 GHz ~ 4.3 GHz) are obtained on both sides of the passband with sharp rejection. The measurements and comparisons results show that smaller size, wider bandwidth and easier fabrication than the reported filtering couplers are exhibited by the proposed filtering CL-TRD coupler. It indicates that a good candidate for filtering-coupling applications can be served by the proposed coupler.
Citation
Hongmei Liu, Xiaoting Li, Yongquan Guo, Shao-Jun Fang, and Zhongbao Wang, "Design of Filtering Coupled-Line Trans-Directional Coupler with Broadband Bandpass Response," Progress In Electromagnetics Research M, Vol. 100, 163-173, 2021.
doi:10.2528/PIERM20110405
References

1. Chiu, J.-C., C.-M. Lin, and Y.-H. Wang, "A 3-dB quadrature coupler suitable for PCB circuit design," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 9, 3521-3525, Sep. 2006.
doi:10.1109/TMTT.2006.879772

2. Tseng, C.-H. and Y.-T. Chen, "Design and implementation of new 3-dB quadrature couplers using PCB and silicon-based IPD technologies," IEEE Transactionon Components, Packaging and Manufacturing Technology, Vol. 6, No. 5, 675-682, May 2016.
doi:10.1109/TCPMT.2016.2550562

3. Psychogiou, D., R. Gómez-García, and D. Peroulis, "RF wide-band bandpass filter with dynamic in-band multi-interference suppression capability," IEEE Transactions on Circuits and Systems - II: Express Briefs, Vol. 65, No. 7, 898-902, Jul. 2018.
doi:10.1109/TCSII.2017.2726145

4. Wu, X., Y. Li, and X. Liu, "High-order dual-port quasi-absorptive microstrip coupled-line bandpass filters," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 4, 1462-1475, Apr. 2020.
doi:10.1109/TMTT.2019.2955692

5. Chen, C.-F., T.-Y. Huang, C.-C. Chen, et al. "A compact filtering rat-race coupler using dual-mode stub-loaded resonators," IEEE MTT-S International Microwave Symposium Digest, 2012.

6. Lin, T.-W., J.-Y. Wu, and J.-T. Kuo, "Compact filtering branch-line coupler with source-load coupling," IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 2016.

7. Xiang, B. and S. Zheng, "Bandpass filtering 180° patch coupler with wide suppression band," IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), WE3A-13, 97-98, 2016.

8. Shao, Q., F.-C. Chen, Q.-X. Chu, et al. "Novel filtering 180° hybrid coupler and its application to 2 × 4 filtering butler matrix," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3288-3296, Jul. 2018.
doi:10.1109/TMTT.2018.2829894

9. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "A wideband coupler with wide suppression band using coupled stub," Proceedings of the Asia-Pacific Microwave Conference, 1058-1061, 2011.

10. Chou, P.-J., C.-C. Yang, and C.-Y. Chang, "Exact synthesis of unequal power division filtering rat-race ring couplers," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 7, 3277-3287, Jul. 2018.
doi:10.1109/TMTT.2018.2832040

11. Gómez-García, R., J.-M. Muñoz-Ferreras, and D. Psychogiou, "Input-reflectionless out-of-phase 3-dB bandpass filtering couplers," IEEE Radio and Wireless Symposium (RWS), 2019.

12. Wang, W. M., Y. Zheng, Y. L. Wu, et al. "Wide-band filtering three-port coupler with inherent DC-blocking function," IEEE Access, Vol. 7, 13170-13177, Feb. 2019.
doi:10.1109/ACCESS.2019.2892995

13. Gómez-García, R., L. Yang, J.-M. Muñoz-Ferreras, et al. "Single/Multi-band coupled-multi-line filtering section and its application to RF diplexers, bandpass/bandstop filters, and filtering couplers," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 10, 3959-3972, Oct. 2019.
doi:10.1109/TMTT.2019.2933212

14. Dong, G., W. Wang, Y. Wu, et al. "Filtering rat-race couplers with impedance transforming characteristics based on terminated coupled line structures," IET Microwaves, Antennas & Propagation, Vol. 14, No. 8, 732-742, Mar. 2020.

15. Yum, W., Y. Rao, H. Jenny Qian, et al. "Reflectionless filtering 90° coupler using stacked cross coupled-line and loaded cross-stub," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 5, 481-484, May 2020.
doi:10.1109/LMWC.2020.2986155

16. Shie, C.-I., J.-C. Cheng, S.-C. Chou, et al. "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 12, 2981-2987, Dec. 2009.
doi:10.1109/TMTT.2009.2034219

17. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, Inc., 2011.