1. Chang, Y. H., Y. Y. Jhu, and C. J. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Optics Communications, Vol. 285, No. 6, 1501-1504, 2012.
doi:10.1016/j.optcom.2011.10.053
2. Bougriou, F., et al. "Optofluidic sensor using two-dimensional photonic crystal waveguides," Eur. Phys. J. Appl. Phys., Vol. 62, No. 1, 11201-11205, 2013.
doi:10.1051/epjap/2013110442
3. Wu, J. J. and J. X. Gao, "Low temperature sensor based on one-dimensional photonic crystals with a dielectric-superconducting pair defect," Optik, Vol. 126, No. 24, 5368-5371, 2015.
doi:10.1016/j.ijleo.2015.09.148
4. Ma, L., T. Katagiri, and Y. Matsuura, "Surface-plasmon resonance sensor using silica-core Bragg fiber," Opt. Lett., Vol. 34, No. 7, 1069-1071, 2009.
doi:10.1364/OL.34.001069
5. Lai, W., S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, "On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide," Opt. Lett., Vol. 36, 984-986, 2011.
doi:10.1364/OL.36.000984
6. Zhang, Y., Y. Zhao, and Q. Wang, "Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity," Sens. Actuators B: Chem., Vol. 209, 431-437, 2015.
doi:10.1016/j.snb.2014.12.002
7. Chang, Y., Y. Jhu, and C. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Optics Communications, Vol. 285, 1501-1504, 2012.
doi:10.1016/j.optcom.2011.10.053
8. Zhang, Y., Y. Zhao, and R. Lv, "A review for optical sensors based on photonic crystal cavities," Sens. Actuators A: Phys., Vol. 233, 374-389, 2015.
doi:10.1016/j.sna.2015.07.025
9. Liu, Y. and H. W. M. Salemink, "All-optical on-chip sensor for high refractive index sensing in photonic crystals," EPL, Vol. 107, No. 1-5, 34008, 2014.
doi:10.1209/0295-5075/107/34008
10. Zheng, S., B. Shan, M. Ghandehari, and J. Ou, "Sensitivity characterization of cladding modes in long-period gratings photonic crystal¯ber for structural health monitoring," Measurement, Vol. 72, 43-51, 2015.
doi:10.1016/j.measurement.2015.04.014
11. Zheng, S., Y. Zhu, and S. Krishnaswamy, "Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity," SPIE, Vol. 8346, 83460D, 2012.
12. Fenzl, C., T. Hirsch, and O. S. Wolfbeis, "Photonic crystals for chemical sensing and biosensing," Angew. Chem. Int. Edit., Vol. 53, 3318-3335, 2014.
doi:10.1002/anie.201307828
13. Gong, Q. H. and X.-Y. Hu, "Ultrafast photonic crystal optical switching," Front. Phys. China, Vol. 1, 171, 2006.
doi:10.1007/s11467-006-0010-3
14. Singh, A., K. B. Thapa, and N. Kumar, "Analysis and design of optical biosensors using one-dimensional photonic crystals," Optik, Vol. 126, No. 2, 244-250, 2015.
doi:10.1016/j.ijleo.2014.08.172
15. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302
16. Mohebbi, M., "Refractive index sensing of gases based on a one-dimensional photonic crystal nanocavity," J. Sens. Sens. Syst., Vol. 4, No. 1, 209-215, 2015.
doi:10.5194/jsss-4-209-2015
17. Sakoda, K., Optical Properties of Photonic Crystals, Vol. 80, Springer Science & Business Media, 2004.
18. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, 2009.
19. Mounir, B., C. Haouari, A. Saïd, and A. Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
doi:10.1117/1.OE.58.2.027102
20. Wu, P. C. and W. Lee, "One-dimensional photonic crystals containing memory-enabling liquid crystal defect layers," Proc. SPIE, Vol. 8828, 1-10, 2013.
21. Mohamed, M. S., M. F. O. Hameed, M. M. El-Okr, and S. S. A. Obayya, "Characterization of one-dimensional liquid crystal photonic crystal structure," Optik, Vol. 127, 8774-8781, 2016.
doi:10.1016/j.ijleo.2016.06.101
22. Bouras, M. and A. Hocini, "Mode conversion in magneto-optic rib waveguide made by silica matrix doped with magnetic nanoparticles," Optics Communications, Vol. 363, 138-144, 2016.
doi:10.1016/j.optcom.2015.11.024
23. Marthandappa, M., R. Somashekar, and Nagappa, "Electro-optic effects in nematic liquid crystals," Phy. State Sol. (A), 127-259, 1991.
24. Armand, H. and M. D. Ardakani, "Theoretical study of liquid crystal dielectric-loaded plasmonic waveguide," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 275, 2017.
doi:10.1017/S1759078715001695
25. Liu, Y., Y. Liu, H. Li, D. Jiang, W. Cao, H. Chen, L. Xia, and R. Xu, "Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal," Review of Scientific Instruments, Vol. 87, 074709, 2016.
doi:10.1063/1.4959199
26. Li, J., C. H. Wen, S. Gauza, R. Lu, and S. Wu, "Refractive indices of liquid crystals for display applications," IEEE/OSA J. Disp. Technol., Vol. 1, 51-61, 2005.
doi:10.1109/JDT.2005.853357
27. Li, J., S.-T. Wu, B. Stefano, M. Riccardo, and F. Sandro, "Infrared refractive indices of liquid crystals," J. Appl. Phys., Vol. 97, 073501, 2005.
doi:10.1063/1.1877815
28. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," Appl. Phys., Vol. 95, 896, 2004.
doi:10.1063/1.1635971
29. Bouzidi, A. and D. Bria, "Low temperature sensor based on one-dimensional photonic crystals," International Conference on Electronic Engineering and Renewable Energy, 157-163, Springer, Singapore, 2018.
30. Hocini, A., M. Bouras, and H. Amata, "Theoretical investigations on optical properties of magneto-optical thinfilm on ion-exchanged glass waveguide," Opt. Mater., Vol. 35, No. 9, 1669-1674, 2013.
doi:10.1016/j.optmat.2013.04.026
31. Dermeche, N., M. Bouras, and R. Abdi-Ghaleh, "Existence of high Faraday rotation and transmittance in magneto photonic crystals made by silica matrix doped with magnetic nanoparticles," Optik, Vol. 198, 163225, 2019.
doi:10.1016/j.ijleo.2019.163225
32. Liu, Y., Y. Liu, H. Li, D. Jiang, W. Cao, H. Chen, L. Xia, and R. Xu, "Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal," Review of Scientific Instruments, Vol. 87, 074709, 2016.
doi:10.1063/1.4959199
33. Mounir, B., C. Haouari, A. Saïd, and A. Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
doi:10.1117/1.OE.58.2.027102
34. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," Appl. Phys., Vol. 95, 896, 2004.
doi:10.1063/1.1635971
35. Monmayrant, A., et al. "Full optical confinement in 1D mesoscopic photonic crystal-based microcavities: An experimental demonstration," Optics Express, Vol. 25, No. 23, 28288-28294, 2017.
doi:10.1364/OE.25.028288
36. D'orazio, A., "Infiltrated liquid crystal photonic bandgap devices for switching and tunable filtering," Fiber and Integrated Optics, Vol. 22, No. 3, 161-172, 2003.
doi:10.1080/01468030390111968
37. Perova, T. S., et al. "Tunable one-dimensional photonic crystal structures based on grooved Si infiltrated with liquid crystal E7," Phy. State Sol. (C), Vol. 4, No. 6, 1961-1965, 2007.
doi:10.1002/pssc.200674340
38. Miroshnichenko, A. E., E. Brasselet, and Y. S. Kivshar, "All-optical switching and multistability in photonic structures with liquid crystal defects," Applied Physics Letters, Vol. 92, No. 25, 230, 2008.
doi:10.1063/1.2949076