Vol. 100
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-13
Optimization Design and Research on Vibration and Noise of Permanent Magnet Synchronous Motor for Vehicle
By
Progress In Electromagnetics Research M, Vol. 100, 105-115, 2021
Abstract
The electromagnetic vibration noise level of a permanent magnet synchronous motor (PMSM) directly affects the Noise, Vibration and Harshness (NVH) performance of an electric vehicle. Taking a permanent magnet synchronous motor (PMSM) for electric vehicle driving as an example, the electromagnetic noise characteristics were studied by combining ANSYS Workbench multi-physical field finite element analysis platform. The electromagnetic vibration force of the stator teeth of the motor is the main source of electromagnetic noise. The magnetic field of the motor can be optimized by changing the slot structure of the motor rotor, so as to improve the electromagnetic vibration force of the stator teeth and reduce the electromagnetic vibration noise of the motor. In order to optimize the magnetic field, three different rotor slot structures are proposed. The most suitable slot structure is found by comparing and analyzing the magnetic field, noise field and electromagnetic force with the structure before optimization. By comparing the results before and after optimization, it can be seen that the optimized motor can effectively reduce the vibration noise of the motor and ensure the electromagnetic performance of the motor.
Citation
Jun Shen, Xuejun Chen, Zhixin Cui, and Lin Ma, "Optimization Design and Research on Vibration and Noise of Permanent Magnet Synchronous Motor for Vehicle," Progress In Electromagnetics Research M, Vol. 100, 105-115, 2021.
doi:10.2528/PIERM20102711
References

1. Wang, Q., P. Zhao, and X. Du, "Electromagnetic vibration analysis and slot-pole structural optimization for a novel integrated permanent magnet in-wheel motor," Energies, Vol. 13, No. 13, 3488, 2020.
doi:10.3390/en13133488

2. Li, J., K. Wang, and F. Li, "Analytical prediction of optimal split ratio of consequent-pole permanent magnet machines," IET Electric Power Applications, Vol. 3, No. 12, 365-372, 2017.

3. Zhu, X., W. Hua, and Z. Wu, "Cogging torque minimisation in FSPM machines by right-angle-based tooth chamfering technique," IET Electric Power Applications, Vol. 5, No. 12, 627-634, 2018.
doi:10.1049/iet-epa.2017.0718

4. Mehrdad, J. and B. Hossein, "Optimum design of the stator parameters for noise and vibration reduction in BLDC motor," The Institution of Engineering and Technology, Vol. 12, No. 9, 1297-1305, 2018.

5. Zhu, X., W. Hua, and G. Zhang, "Analysis and reduction of cogging torque for flux-switching permanent magnet machines," IEEE Transactions on Industry Applications, Vol. 6, No. 55, 5854-5864, 2019.
doi:10.1109/TIA.2019.2938721

6. Chang-Min, L., H. Seo, and J. Lee, "Optimization of vibration and noise characteristics of skewed permanent brushless direct current motor," IEEE Transactions on Magnetics, Vol. 53, No. 11, 1-5, 2017.

7. Fu, L., S. Zuo, W. Deng, and S. Wu, "Reduction of vibration and acoustic noise in permanent magnet synchronous motor by optimizing magnetic forces," Journal of Sound and Vibration, Vol. 429, 193-205, 2018.

8. Ma, C., J. Li, and H. Zhao, "3-D analytical model of armature reaction field of IPMSM with multi-segmented skewed poles and multi-layered flat wire winding considering current harmonics," IEEE ACCESS, Vol. 8, 151116-1511124, 2020.
doi:10.1109/ACCESS.2020.3017005

9. Dong, Q., X. Liu, and H. Qi, "Analysis and evaluation of electromagnetic vibration and noise in permanent magnet synchronous motor with rotor step skewing," Science China-Technological Sciences, Vol. 62, No. 5, 839-848, 2019.
doi:10.1007/s11431-018-9458-5

10. Lecointe, J.-P., B. Cassoret, and J.-F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Electromagnetics Research, Vol. 112, 125-137, 2011.
doi:10.2528/PIER10110803

11. Zhang, W., Y. Xu, and H. Huang, "Vibration reduction for dual-branch three-phase permanent magnet synchronous motor with carrier phase-shift technique," IEEE Transactions on Power Electronics, Vol. 35, No. 1, 607-618, 2020.
doi:10.1109/TPEL.2019.2910311

12. Hara, T., T. Ajima, and Y. Tanabe, "Analysis of vibration and noise in permanent magnet synchronous motors with distributed winding for the PWM method," IEEE Transactions on Industry Applications, Vol. 54, No. 6, 6042-6049, 2018.
doi:10.1109/TIA.2018.2847620

13. Rafaq, M. S. and J. W. Jung, "A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range," IEEE Transactions on Industrial Informatics, Vol. 7, No. 16, 4747-4758, 2020.
doi:10.1109/TII.2019.2944413

14. Ramaiah, V. J. and S. Keerthipati, "Hybrid PWM scheme for pole-phase modulation induction motor drive using carrier-based hexagonal and octadecagonal SVPWM," IEEE Transactions on Industrial Electronics, Vol. 9, No. 67, 7312-7320, 2020.
doi:10.1109/TIE.2019.2946537

15. Liu, C., J. Lu, Y. Wang, G. Le, and J. Zhu, "Techniques for reduction of the cogging torque in claw pole machines with SMC cores," Energies, Vol. 10, No. 10, 1541, 2017.
doi:10.3390/en10101541

16. Chen, M., K.-T. Chau, C. H. T. Lee, and C. Liu, "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.
doi:10.2528/PIER15072701

17. Nobahari, A., A. Darabo, and A. Hassannia, "Various skewing arrangements and relative position of dual rotor of an axial °ux induction motor, modelling and performance evaluation," IET Electric Power Applications, Vol. 4, No. 12, 575-580, 2018.
doi:10.1049/iet-epa.2017.0716

18. Bonthu, S. S. R., T. Bin, and S. Choi, "Optimal torque ripple reduction technique for outer rotor permanent magnet synchronous reluctance motors," IEEE Transactions on Energy Conversion, Vol. 3, No. 33, 1184-1192, 2018.
doi:10.1109/TEC.2017.2781259

19. Huang, Y., L. Yan, F. Yang, and W. Zeng, "Research on active disturbance rejection control of hybrid excitation magnetic suspension switched reluctance motor considering noise," Progress In Electromagnetics Research M, Vol. 93, 197-207, 2020.
doi:10.2528/PIERM20040903

20. Ruba, M., F. Jurca, and L. Czumbil, "Synchronous reluctance machine geometry optimisation through a genetic algorithm based technique," IET Electric Power Applications, Vol. 3, No. 12, 431-438, 2018.
doi:10.1049/iet-epa.2017.0455

21. Rick, S., K. P. Aryanti, F. David, and H. Kay, "Hybrid acoustic model of electric vehicles: Force excitation in permanent-magnet synchronous machines," IEEE Transactions on Industry Applications, Vol. 52, No. 4, 2979-2987, 2016.
doi:10.1109/TIA.2016.2547360