Vol. 95
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-11-26
An Octaband Temperature Tunable Terahertz Metamaterial Absorber Using Tapered Triangular Structures
By
Progress In Electromagnetics Research Letters, Vol. 95, 9-16, 2021
Abstract
The recent growth of terahertz (THz) applications has sparked interest in the design of novel electromagnetic structures for this frequency regime. One of the structures is the THz absorber, used in sensing and imaging applications. Metamaterial based designs are commonly used to achieve the desired absorption characteristics. Absorbers whose spectra can be tuned by changing the temperature are a subclass in the broad family of THz absorbers that are used for temperature sensing. In the beginning years, single band temperature tunable absorbers were designed, and at present the focus has shifted to the design of multi-band temperature tunable absorbers. Absorbers with six tunable bands have already been proposed. In this paper an octa-band temperature tunable terahertz metamaterial absorber is proposed, whose unit cell consists of four orthogonally placed tapered triangular structures connected by a ring resonator on top of an InSb dielectric substrate. At 210K it is observed that the structure's absorption spectra are: 98.7% at 1.026 THz, 79.5% at 1.245 THz, 90.4% at 1.301 THz, 95.2% at 1.442 THz, 97.44% at 1.585 THz, 96.4% at 1.644 THz, 97.1% at 1.756 THz, and 90.4% at 2.071 THz. The temperature sensitivities of the proposed structure in eight of its absorption bands are 10.3 GHz/K, 8.22 GHz/K, 7.96 GHz/K, 7.02 GHz/K, 6.44 GHz/K, 6.17 GHz/K, 5.5 GHz/K, and 3.2 GHz/K, respectively. Thus, the proposed design can have practical applications in terahertz temperature sensing applications.
Citation
Bhargav Appasani, "An Octaband Temperature Tunable Terahertz Metamaterial Absorber Using Tapered Triangular Structures," Progress In Electromagnetics Research Letters, Vol. 95, 9-16, 2021.
doi:10.2528/PIERL20101501
References

1. Shamonina, E. and L. Solymar, "Metamaterials: How the subject started," Metamaterials, Vol. 1, 12-18, 2007.
doi:10.1016/j.metmat.2007.02.001

2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Uspekhi Fizicheskikh Nauk, Vol. 10, No. 4, 509-514, 1968.

3. Grant, J., I. J. H. Mccrindle, and D. R. S. Cumming, "Multi-spectral materials: Hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber," Optics Express, Vol. 24, 3451-3463, 2016.
doi:10.1364/OE.24.003451

4. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Application of Negative Refractive Index Materials, CRC Press, 2008.
doi:10.1201/9781420068764

5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physics Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

6. Siegel, P. H., "Terahertz technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 910-928, Mar. 2002.
doi:10.1109/22.989974

7. Tonouchi, M., "Cutting-edge terahertz technology," Nature Photonics, Vol. 1, No. 2, 97-105, 2007.
doi:10.1038/nphoton.2007.3

8. Yen, T. J., et al., "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1126/science.1094025

9. Rhee, J. Y., Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, "Metamaterial-based perfect absorbers," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 13, 1541-1580, 2014.
doi:10.1080/09205071.2014.944273

10. He, X. Y., X. Zhong, F. T. Lin, and W. Z. Shi, "Investigation of graphene assisted tunable terahertz metamaterials absorber," Optic Materials Express, Vol. 6, No. 2, 331-342, 2016.
doi:10.1364/OME.6.000331

11. Xiong, H., Q. Ji, T. Bashir, and F. Yang, "Dual-controlled broadband terahertz absorber based on graphene and dirac semimetal," Optics Express, Vol. 28, No. 9, 13884-13894, 2020.
doi:10.1364/OE.392380

12. Hu, F., Y. Qian, Z. Li, J. Niu, et al. "Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array," Journal of Optics, Vol. 15, No. 5, 055-101, 2013.
doi:10.1088/2040-8978/15/5/055101

13. Wang, B. X., X. Zhai, G. Z.Wang, W. Q. Huang, and L. L.Wang, "Frequency tunable metamaterial absorber at deep-subwavelength scale," Optic Materials Express, Vol. 5, 227-235, 2015.
doi:10.1364/OME.5.000227

14. Castorina, G., L. Di Donato, A. F. Morabito, T. Isernia, and G. Sorbello, "Analysis and design of a concrete embedded antenna for wireless monitoring applications," IEEE Antennas and Propagation Magazine, Vol. 58, No. 6, 76-93, 2016.
doi:10.1109/MAP.2016.2609818

15. Wang, B. X. and G. Z. Wang, "Temperature tunable metamaterial absorber at THz frequencies," Journal of Materials Science: Materials in Electronics, Vol. 28, No. 12, 1-7, 2017.

16. Song, Z. Y., K. Wang, J. W. Li, and Q. H. Liu, "Broadband tunable terahertz absorber based on vanadium dioxide metamaterials," Optics Express, Vol. 26, No. 6, 7148-7154, 2018.
doi:10.1364/OE.26.007148

17. Oszwalldowki, M. and M. Zimpel, "Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb," Journal of Physics and Chemistry of Solids, Vol. 49, 1179-1185, 1988.
doi:10.1016/0022-3697(88)90173-4

18. Li, Z. Z., C. Y. Luo, G. Yao, J. Yue, J. Ji, J. Q. Yao, and F. R. Ling, "Design of a concise and dual-band tunable metamaterial absorber," Chinese Optics Letters, Vol. 14, No. 10, 102303, 2016.
doi:10.3788/COL201614.102303

19. Li, W., D. Kuang, F. Fan, S. Chang, and L. Lin, "Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure," Applied Optics, Vol. 51, No. 21, 7098-7102, 2012.
doi:10.1364/AO.51.007098

20. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Optical Materials, Vol. 88, 674-679, 2019.
doi:10.1016/j.optmat.2019.01.002

21. Verma, V. K., et al., "An octaband polarization insensitive terahertz metamaterial absorber using orthogonal elliptical ring resonators," Plasmonics, Vol. 15, No. 1, 75-81, 2020.
doi:10.1007/s11468-019-01010-y