Vol. 99
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-04
Design of Metamaterial Based Multilayer Antenna for Navigation/WiFi /Satellite Applications
By
Progress In Electromagnetics Research M, Vol. 99, 103-113, 2021
Abstract
Wireless communication plays a vital role in transmitting information from one point to another. Wireless devices have to be smart, intelligent, compact in size and cost effective to meet the demand of wireless communication. A multi-layered, Split Ring Resonator (SRR), negative permeability material inspired antenna has been designed, analyzed, fabricated, and measured. The developed antenna resonates at 1.13 GHz, 2.47 GHz, and 2.74 GHz frequencies with gain of 3.73 dBi, 6.18 dBi, 1.35 dBi, and bandwidth of 2.10%, 2.81%, and 2.09%, respectively. The structure utilizes FR4 material as a substrate. The engineered model has applications in navigation, WiFi, and satellite communication applications.
Citation
Aneri Pandya, Trushit K. Upadhyaya, and Killol Pandya, "Design of Metamaterial Based Multilayer Antenna for Navigation/WiFi /Satellite Applications," Progress In Electromagnetics Research M, Vol. 99, 103-113, 2021.
doi:10.2528/PIERM20100105
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

2. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 963-966, 2011.
doi:10.1109/LAWP.2011.2167309

3. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandöken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229, 2016.
doi:10.1017/S175907871400138X

4. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
doi:10.1117/1.OE.53.10.107104

5. Islam, M. M., M. T. Islam, and M. R. Faruque, "Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands," Scientific World Journal, Vol. 2013, 378420, 2013.

6. Patel, U. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502

7. Sarkar, D., K. Saurav, and K. V. Srivastava, "Multi-band microstrip-fed slot antenna loaded with split-ring resonator," Electron. Lett., Vol. 50, 1498-1500, 2014.
doi:10.1049/el.2014.2625

8. Wan, Y.-T., D. Yu, F.-S. Zhang, and F. Zhang, "Miniature multi-band monopole antenna using spiral ring resonators for radiation pattern characteristics improvement," Electron. Lett., Vol. 49, 382-384, 2013.
doi:10.1049/el.2012.3980

9. Basaran, S. C., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, 636-638, 2013.
doi:10.1049/el.2013.0357

10. Patel, R. H., A. H. Desai, and T. Upadhyaya, "Design of H-shape X-band application electrically small antenna," International Journal of Electrical Electronics and Data Communication (IJEEDC), Vol. 3, 1-4, 2015.

11. Sim, C. Y. D., H. D. Chen, K. C. Chiu, and C. H. Chao, "Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications," IET Microw. Antenna Propag., Vol. 6, No. 14, 1529-1535, 2012.
doi:10.1049/iet-map.2012.0174

12. Xu, H. X., G. M. Wang, and M. Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008

13. Pan, C. Y., T. S. Horng, W. S. Chen, and C. H. Huang, "Dual wideband printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 149-151, 2007.
doi:10.1109/LAWP.2007.891957

14. Xu, H. X., G. M. Wang, M. Q. Qi, C. X. Zhang, J. G. Liang, J. Q. Gong, et al. "Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298

15. Xu, H. X., G. M. Wang, Y. Y. Lv, M. Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branchcircuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

16. Xu, H. X., G. M. Wang, M. Q. Qi, and T. Cai, "Compact fractal left-handed structures for improved cross-polarization radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 546-554, 2014.
doi:10.1109/TAP.2013.2290308

17. Li, J., Y. Cheng, Y. Nie, and R. Gong, "Metamaterial extends microstrip antenna," Microwaves RF, Vol. 52, 69-73, 2013.

18. Hamad, E. K. I. and A. Abdelaziz, "Performance of a metamaterial-based 1 × 2 microstrip patch antenna array for wireless communications examined by characteristic mode analysis," Radioengineering, Vol. 28, No. 4, 681, 2019.
doi:10.13164/re.2019.0680

19. Hamad, E. K. I. and A. Abdelaziz, "Metamaterial superstrate microstrip patch antenna for 5G wireless communication based on the theory of characteristic modes," Journal of Electrical Engineering, Vol. 70, No. 3, 187-197, 2019.
doi:10.2478/jee-2019-0027

20. Kaur, H. and A. Sharma, "Microstrip patch antennas using metamaterials: A review," International Journal of Electronics, Electrical and Computational System, Vol. 6, No. 6, 130-133, 2017.

21. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-195109, 2002.
doi:10.1103/PhysRevB.65.195104

22. Singh, H. P. and R. Y. Kumar, "Design and simulation of rectangular microstrip patch antenna loaded with metamaterial structure," Electric Electron. Tech. Open Acc. J., Vol. 1, No. 2, 00012, 2017.

23. Gangwar, K. P., P. R. P. S. Gangwar, and R. Verma, "Multiband microstrip patch antenna using metamaterial structure," 2nd International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS'15), 2018.

24. Islam, M. R., A. A. Alsaleh Adel, A. W. N. Mimi, M. Sarah Yasmin, and F. A. M. Norun, "Design of dual band microstrip patch antenna using metamaterial," IOP Conference Series: Materials Science and Engineering, Vol. 260, No. 1, 012037, IOP Publishing, 2017.
doi:10.1088/1757-899X/1067/1/012037

25. Li, L.-W., Y.-N. Li, T.-S. Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Applied Physics Letters, Vol. 96, No. 6, 164101, April 2010.

26. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with lefthanded metamaterials," IEEE Trans. Antennas Propag., Vol. 57, 331-338, 2009.
doi:10.1109/TAP.2008.2011230

27. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed transmission line based compact resonant antennas for RF module integration," IEEE Trans. Antennas Propag., Vol. 54, 2283-2291, 2006.
doi:10.1109/TAP.2006.879199

28. Iizuka, H. and P. S. Hall, "Left-handed dipole antennas and their implementations," IEEE Trans. Antennas Propag., Vol. 55, 1246-1253, 2007.
doi:10.1109/TAP.2007.895568

29. Vahora, A. and K. Pandya, "Implementation of cylindrical dielectric resonator antenna array for Wi-Fi/wireless LAN/satellite applications," Progress In Electromagnetics Research, Vol. 90, 157-166, 2020.
doi:10.2528/PIERM20011604

30. Pimpalgaonkar, P. R., T. K. Upadhyaya, K. Pandya, M. R. Chaurasia, and B. T. Raval, "A review on dielectric resonator antenna," 1st International Conference on Automation in Industries (ICAI), 106-109, June 2016.

31. Vahora, A. and K. Pandya, "Triple band dielectric resonator antenna array using power divider network technique for GPS navigation/bluetooth/satellite applications," International Journal of Microwave and Optical Technology, Vol. 15, 369-378, July 2020.

32. Vahora, A. and K. Pandya, "Microstrip feed two elements pentagon dielectric resonator antenna array," 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET), 22-25, IEEE, 2019.
doi:10.1109/ICITAET47105.2019.9170140

33. Pimpalgaonkar, P. R., M. R. Chaurasia, B. T. Raval, T. K. Upadhyaya, and K. Pandya, "Design of rectangular and hemispherical dielectric resonator antenna," 2016 International Conference on Communication and Signal Processing (ICCSP), 1430-1433, IEEE, 2016.
doi:10.1109/ICCSP.2016.7754392

34. Patel, A., Y. Kosta, N. Chhasatia, and K. Pandya, "Multiple band waveguide based microwave resonator," IEEE International Conference on Advances in Engineering, Science and Management (ICAESM-2012), 84-87, IEEE, March 2012.