Vol. 95
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-12-09
A New Equivalent Circuit Scheme for Grounded Back-to-Back GCPW-MS-GCPW Transitions Fabricated on a Thin Low-k Substrate
By
Progress In Electromagnetics Research Letters, Vol. 95, 33-42, 2021
Abstract
We hereby present a new equivalent circuit model including both lumped and distributed elements for GCPW-MS transitions (GCPW for Grounded Coplanar Waveguide and MS for Microstrip). In order validating the modelling results, such transitions have been fabricated on a 20 µm-thick BCB (Benzocyclobutene resin) substrate using grounding pads including via-holes of different diameters. The study focuses on the impact of the via-hole design on the performance of the transition and more specifically on its bandwidth. The transitions were made using a simple technological process based on photosensitive polymer. ADS simulation data of the new equivalent circuit model were in very good agreement with measured S-parameters. Both theoretical and experimental results show that the bandwidth of such a transition can reach up to 100 GHz bandwidth using via-holes of 900 µm diameter.
Citation
Pierre-Vincent Dugue, Mohammed El-Gibari, Mathieu Halbwax, Stephane Ginestar, Vanessa Avramovic, Jean-Pierre Vilcot, and Hongwu Li, "A New Equivalent Circuit Scheme for Grounded Back-to-Back GCPW-MS-GCPW Transitions Fabricated on a Thin Low-k Substrate," Progress In Electromagnetics Research Letters, Vol. 95, 33-42, 2021.
doi:10.2528/PIERL20093003
References

1. Larson, L., "RF and microwave hardware challenges for future radio spectrum access," Proc. IEEE, Vol. 102, No. 3, 321-333, Mar. 2014.
doi:10.1109/JPROC.2014.2298231

2. Sain, A. and K. L. Melde, "Impact of Ground via placement in grounded coplanar waveguide interconnects," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 6, No. 1, 136-144, Jan. 2016.
doi:10.1109/TCPMT.2015.2507121

3. Xu, J., C. Sun, B. Xiong, and Y. Luo, "Resonance suppression of grounded coplanar waveguide in submount for 40 Gb/s optoelectronic modules," J. Infrared Millim. Terahertz Waves, Vol. 30, No. 2, 103-108, Feb. 2009.
doi:10.1007/s10762-008-9442-x

4. Zhou, Z. and K. L. Melde, "Development of a broadband coplanar waveguide-to-microstrip transition with vias," IEEE Trans. Adv. Packag., Vol. 31, No. 4, 861-872, Nov. 2008.
doi:10.1109/TADVP.2008.924254

5. Lee, M., H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science, Vol. 298, 1401-1403, Dec. 2002.
doi:10.1126/science.1077446

6. Goldfarb, M. E. and R. A. Pucel, "Modeling via hole grounds in microstrip," IEEE Microw. Guid. Wave Lett., Vol. 1, No. 6, 135-137, Jun. 1991.
doi:10.1109/75.91090

7. CYCLOTENE 4000 series — Kayaku advanced materials.

8. Kondo, K., U. Suzuki, T. Saito, N. Okamoto, and M. Marunaka, "High-aspect ratio copper-via filling for three dimensional chip stacking," 59th Electronic Components and Technology Conference, 658-662, 2009.

9. Lin, C.-L., P.-S. Chen, Y.-C. Lin, B.-Y. Tsui, and M.-C. Chen, "Via-filling capability of copper film by CVD," J. Electrochem. Soc., Vol. 150, No. 7, C451, May 2003.
doi:10.1149/1.1575739

10. Wu, B., A. Kumar, and S. Pamarthy, "High aspect ratio silicon etch: A review," J. Appl. Phys., Vol. 108, No. 5, 051101, Sept. 2010.
doi:10.1063/1.3474652

11. McKerricher, G., J. G. Perez, and A. Shamim, "Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias," IEEE Trans. Electron Devices, Vol. 62, No. 3, 1002-1009, Mar. 2015.
doi:10.1109/TED.2015.2396004

12. Josell, D., B. Baker, C. Witt, D. Wheeler, and T. P. Moffat, "Via filling by electrodeposition: Superconformal silver and copper and conformal nickel," J. Electrochem. Soc., Vol. 149, No. 12, C637, Oct. 2002.
doi:10.1149/1.1517583

13. Luhn, O., C. A. Van Hoof, W. Ruythooren, and J.-P. Celis, "Filling of microvia with an aspect ratio of 5 by copper electrodeposition," Electrochimica Acta, Vol. 54, No. 9, 2504-2508, Mar. 2009.
doi:10.1016/j.electacta.2008.04.002

14. Wiatr, W., D. K. Walker, and D. F. Williams, "Coplanar-waveguide-to-microstrip transition model," 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017), Vol. 3, 1797-1800, 2000.
doi:10.1109/MWSYM.2000.862328