1. Ryan, C. G. M., J. R. Brag, and Y. M. M. Antar, "A broadband transmitarray using double square ring elements," 13th Int. Symp. on Antenna Technol. and Appl. Electromagnetics and the Canadian Radio Sciences Meeting, 2009.
2. Nematollahi, H., J. J. Laurin, J. E. Page, and J. A. Encinar, "Design of broadband transmitarray unit cells with comparative study of different numbers of layers," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1473-1481, Apr. 2015.
doi:10.1109/TAP.2015.2402285
3. Frost, C., "Measurement notes: Measurement and evaluation of artificial dielectric material," Pulse Power Physics, Apr. 2012.
4. Zainud-Deen, S. H., W. M. Hassan, and K. H. Awadalla, "Radiation characteristics enhancement of dielectric resonator antenna using solid/discrete dielectric lenses," Advanced Electromagnetics, Vol. 4, No. 1, Feb. 2015.
5. Kaouach, H., L. Dussopt, R. Sauleau, and T. Koleck, "Design and demonstration of an X-band transmit-array," 2009 3rd European Conference on Antennas and Propagation, 1191-1195, Berlin, 2009.
6. Zhou, S. N., Z. B. Wang, and Y. J. Feng, "Optimal design of wideband radar absorbing structure consisting of resistive meta-surface layers," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, 2012.
7. Guo, Y. J. and S. K. Barton, "Flat printed lens and reflector antennas," 1995 Ninth International Conference on Antennas and Propagation, ICAP ’95 (Conf. Publ. No. 407), Vol. 1, 253-256, Eindhoven, Netherlands, 1995.
8. Proudfoot, P., O. H. Dayton, M. Mehalic, and A. Terzouli, "Design and testing of a lightweight, planar microwave lens," Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 1, 495-498, 1992.
9. Wang, Y., H. Deguchi, and M. Tsuji, "A broadband flat lens based on aperture-coupled patch FSSs with four-pole resonant behaviour," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-2, Chicago, IL, 2012.
10. Ali, T., I. Bendoym, S. Kaceniar, A. Golovin, and D. Crouse, "Metamaterials lens design for microwave,", Retrieved from http://metaconferences.org/ocs/public/conferences/9/ pdf/3543.pdf.
11. Gagnon, N., Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for microwave applications, Ph.D. dissertation, School of Information Technology and Engineering, University of Ottawa, Canada, 2011.
12. Silver, S., Microwave Antenna Theory and Design, Institution of Engineering and Technology, 1949.
13. Wang, Z., J. Chen, and M. Xue, "Terahertz lenses based on nonuniform metasurfaces," Optics Communications, Vol. 338, 585-589, Nov. 2015.
14. Lau, J. Y., Reconfigurable transmitarray antennas, Ph.D. dissertation, Dep. Elect. and Comp. Eng., University of Toronto, Canada, 2012.
15. Shaker, J., "Natural and artificial dielectrics: Similarities and differences," Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference 14th International Symposium, 2010.
16. Zainud-Deen, Sr., S.M. Gaber, H. A. Malhat, and K. W. Awadalla, "Single feed dual-polarization dual-band transmitarray for satellite applications," 30th National Radio Science Conference, 27-34, Apr. 2013.
17. Abdelrahman, H., A. Z. Elsherbeni, and F. Yang, "High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1288-1291, 2014.
doi:10.1109/LAWP.2014.2334663
18. Erdil, E., K. Topalli, O. Zorlu, and T. Toral, "A reconfigurable microfluidic transmitarray unit cell," 7th European Conference on Antennas and Propagation, 2957-2960, Apr. 2013.
19. Rajagopalan, H. and Y. Rahmat-Samii, "Reflectarray antennas: An intuitive explanation of reflection phase behavior," XXXth URSI, General Assembly and Scientific Symposium, 1-4, 2011.
20. He, Y. and G. V. Eleftheriades, "Rotated infrared antenna transmitarray for the manipulation of circularly polarized wavefronts," EPJ Appl. Metamat., Vol. 1, No. 8, 2014.
21. Neu, J., B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, "Metamaterial-based gradient index lens with strong focusing in the THz frequency range," Opt. Express, Vol. 18, No. 26, 22748-22757, Dec. 2010.
doi:10.1364/OE.18.027748
22. Monticone, F., N. M. Estakhri, and A. Alu, "Manipulating the nanoscale optical transmission with a meta-transmitarray,", Feb. 2013, Retrieved from http://arxiv.org/abs/1302.6260.
23. Goodman, J., Introduction to Fourier Optics, 3rd Ed., Roberts & Company, 2005.
24. Ersoy, O., Diffraction, Fourier Optics and Imaging, John Wiley & Sons, 2006.
25. Hecht, E., Optics, 4th Ed., 149-165, Addison Wisley, 2002.
26. Abdelrahman, H., P. Nayeri, A. Z. Elsherbeni, and F. Yang, "Bandwidth improvement methods of transmitarray antennas," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 2946-2954, Jul. 2015.
doi:10.1109/TAP.2015.2423706
27. Guha, D. and Y. M. M. Antar, Microstrip and Printed Antennas: New Trends, Techniques and Applications, Wiley, 2010.
doi:10.1002/9780470973370
28. Sulaiman, H. A., M. A. Othman, M. Z. A Abd Aziz, and M. F. Abd Malek (Eds.), Theory and Applications of Applied Electromagnetics, Springer, 2014.
29. Sulaiman, H. A., M. A. Othman, M. F. I. Othman, Y. Rahim, and C. P. Naim, "Double square loop frequency selective surface for GSM shielding," Advanced Computer and Communication Engineering Technology, Springer, Switzerland, 2015.
30. Shaker, J., M. R. Chaharmir, and J. Ethier, Reflectarray Antennas: Analysis, Design Fabrication and Measurement, Artech House, 2013.
31. Chaharmir, M. R., J. Shaker, M. Cuhaci, and A. Ittipiboon, "A broadband reflectarray antenna with double square rings," Microw. Opt. Technol. Lett., Vol. 48, No. 7, 1317-1319, Jul. 2006.
doi:10.1002/mop.21630
32. Ryan, C. G. M., M. R. Chaharmir, J. Shaker, J. R. Bray, Y. M. M. Antar, and A. Ittipiboon, "A wideband transmitarray using dual-resonant double square rings," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1486-1493, May 2010.
doi:10.1109/TAP.2010.2044356
33. Abdelrahman, H., A. Z. Elsherbeni, and F. Yang, "Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 690-697, Feb. 2014.
doi:10.1109/TAP.2013.2289313
34. Abdelrahman, H., A. Z. Elsherbeni, and F. Yang, "Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 690-697, Feb. 2014.
doi:10.1109/TAP.2013.2289313
35. Nematollahi, H. and J. J. Laurin, "Reconfigurable reflector antenna based on transmit-array feeding system with a study on the phase discretization of the transmit-array," Proc. 30th Int. Commun. Satell. Syst. Conf., 1-7, Ottawa, Canada, Sept. 2012.
36. CST Microwave Studio, , , [Online], Available: http://www.cst.com.
37. Tian, C., Y. Jiao, G. Zhao, and H. Wang, "A wideband transmitarray using triple-layer elements combined with cross slots and double square rings," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1561-1564, 2017.
doi:10.1109/LAWP.2017.2651027
38. Zhu, H., L. Guo, and W. Feng, "A transmitarray antenna employing double square ring slot unit cells without dielectric substrate," 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-2, Qingdao, China, 2019.
39. Muhammad, M., et al., "Wideband multi-layer frequency selective surface based transmitarray unit cell for satellite communication applications," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, Xi'an, China, 2019.
40. Plaza, E. G., G. Leon, S. Loredo, and F. Lan-Heras, "A simple model for analyzing transmitarray lenses," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 131-144, Apr. 2015.
doi:10.1109/MAP.2015.2414641
41. Khalizadeh, M. and M. M. Mirsalehi, "Design of a microwave dual-band filter using frequency selective surfaces," 20th Iranian Conference on Electrical Engineering, 2012.
42. Lee, K. and R. J. Langley, "Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence," IEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 132, No. 6, 395-399, Oct. 1985.
doi:10.1049/ip-h-2.1985.0070
43. Langley, R. J. and E. A. Parker, "Double-square frequency-selective surfaces and their equivalent circuit," Electronics Letters, Vol. 19, No. 17, 675-677, Aug. 18, 1983.
doi:10.1049/el:19830460