Vol. 94
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-11-17
Design of a Transmitarray Antenna Using 4 Layers of Double Square Ring Elements
By
Progress In Electromagnetics Research Letters, Vol. 94, 141-149, 2020
Abstract
Conventional dielectric lenses rely on the accumulation of phase delay during wave propagation to produce a desired wavefront. By considering the required phase delay at each lens position, an `equivalent' transmitarray antenna can be obtained. Despite a lack of curvature as in conventional lenses, the phase delay in the transmitarray antenna is achieved via a periodic arrangement of unit cell elements to bend the incident waves in the desired directions. This paper presents the design and characterization of a 4-layer transmitarray antenna consisting of double square ring elements. The gap between the double square rings is varied as a fixed proportion of their dimensions, while keeping the widths constant. The transmitarray element can achieve a transmission phase range of 2350 with a loss of less than 3 dB. The performance of the transmitarray antenna is explicitly compared to that of a convex dielectric lens, both of which are operating at 8 GHz.
Citation
Xian Wei Chua, Tse-Tong Chia, and Kerrell Boon Khim Chia, "Design of a Transmitarray Antenna Using 4 Layers of Double Square Ring Elements," Progress In Electromagnetics Research Letters, Vol. 94, 141-149, 2020.
doi:10.2528/PIERL20092402
References

1. Ryan, C. G. M., J. R. Brag, and Y. M. M. Antar, "A broadband transmitarray using double square ring elements," 13th Int. Symp. on Antenna Technol. and Appl. Electromagnetics and the Canadian Radio Sciences Meeting, 2009.

2. Nematollahi, H., J. J. Laurin, J. E. Page, and J. A. Encinar, "Design of broadband transmitarray unit cells with comparative study of different numbers of layers," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1473-1481, Apr. 2015.
doi:10.1109/TAP.2015.2402285

3. Frost, C., "Measurement notes: Measurement and evaluation of artificial dielectric material," Pulse Power Physics, Apr. 2012.

4. Zainud-Deen, S. H., W. M. Hassan, and K. H. Awadalla, "Radiation characteristics enhancement of dielectric resonator antenna using solid/discrete dielectric lenses," Advanced Electromagnetics, Vol. 4, No. 1, Feb. 2015.

5. Kaouach, H., L. Dussopt, R. Sauleau, and T. Koleck, "Design and demonstration of an X-band transmit-array," 2009 3rd European Conference on Antennas and Propagation, 1191-1195, Berlin, 2009.

6. Zhou, S. N., Z. B. Wang, and Y. J. Feng, "Optimal design of wideband radar absorbing structure consisting of resistive meta-surface layers," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, 2012.

7. Guo, Y. J. and S. K. Barton, "Flat printed lens and reflector antennas," 1995 Ninth International Conference on Antennas and Propagation, ICAP ’95 (Conf. Publ. No. 407), Vol. 1, 253-256, Eindhoven, Netherlands, 1995.

8. Proudfoot, P., O. H. Dayton, M. Mehalic, and A. Terzouli, "Design and testing of a lightweight, planar microwave lens," Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 1, 495-498, 1992.

9. Wang, Y., H. Deguchi, and M. Tsuji, "A broadband flat lens based on aperture-coupled patch FSSs with four-pole resonant behaviour," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-2, Chicago, IL, 2012.

10. Ali, T., I. Bendoym, S. Kaceniar, A. Golovin, and D. Crouse, "Metamaterials lens design for microwave,", Retrieved from http://metaconferences.org/ocs/public/conferences/9/ pdf/3543.pdf.

11. Gagnon, N., Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for microwave applications, Ph.D. dissertation, School of Information Technology and Engineering, University of Ottawa, Canada, 2011.

12. Silver, S., Microwave Antenna Theory and Design, Institution of Engineering and Technology, 1949.

13. Wang, Z., J. Chen, and M. Xue, "Terahertz lenses based on nonuniform metasurfaces," Optics Communications, Vol. 338, 585-589, Nov. 2015.

14. Lau, J. Y., Reconfigurable transmitarray antennas, Ph.D. dissertation, Dep. Elect. and Comp. Eng., University of Toronto, Canada, 2012.

15. Shaker, J., "Natural and artificial dielectrics: Similarities and differences," Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference 14th International Symposium, 2010.

16. Zainud-Deen, Sr., S.M. Gaber, H. A. Malhat, and K. W. Awadalla, "Single feed dual-polarization dual-band transmitarray for satellite applications," 30th National Radio Science Conference, 27-34, Apr. 2013.

17. Abdelrahman, H., A. Z. Elsherbeni, and F. Yang, "High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1288-1291, 2014.
doi:10.1109/LAWP.2014.2334663

18. Erdil, E., K. Topalli, O. Zorlu, and T. Toral, "A reconfigurable microfluidic transmitarray unit cell," 7th European Conference on Antennas and Propagation, 2957-2960, Apr. 2013.

19. Rajagopalan, H. and Y. Rahmat-Samii, "Reflectarray antennas: An intuitive explanation of reflection phase behavior," XXXth URSI, General Assembly and Scientific Symposium, 1-4, 2011.

20. He, Y. and G. V. Eleftheriades, "Rotated infrared antenna transmitarray for the manipulation of circularly polarized wavefronts," EPJ Appl. Metamat., Vol. 1, No. 8, 2014.

21. Neu, J., B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, "Metamaterial-based gradient index lens with strong focusing in the THz frequency range," Opt. Express, Vol. 18, No. 26, 22748-22757, Dec. 2010.
doi:10.1364/OE.18.027748

22. Monticone, F., N. M. Estakhri, and A. Alu, "Manipulating the nanoscale optical transmission with a meta-transmitarray,", Feb. 2013, Retrieved from http://arxiv.org/abs/1302.6260.

23. Goodman, J., Introduction to Fourier Optics, 3rd Ed., Roberts & Company, 2005.

24. Ersoy, O., Diffraction, Fourier Optics and Imaging, John Wiley & Sons, 2006.

25. Hecht, E., Optics, 4th Ed., 149-165, Addison Wisley, 2002.

26. Abdelrahman, H., P. Nayeri, A. Z. Elsherbeni, and F. Yang, "Bandwidth improvement methods of transmitarray antennas," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 2946-2954, Jul. 2015.
doi:10.1109/TAP.2015.2423706

27. Guha, D. and Y. M. M. Antar, Microstrip and Printed Antennas: New Trends, Techniques and Applications, Wiley, 2010.
doi:10.1002/9780470973370

28. Sulaiman, H. A., M. A. Othman, M. Z. A Abd Aziz, and M. F. Abd Malek (Eds.), Theory and Applications of Applied Electromagnetics, Springer, 2014.

29. Sulaiman, H. A., M. A. Othman, M. F. I. Othman, Y. Rahim, and C. P. Naim, "Double square loop frequency selective surface for GSM shielding," Advanced Computer and Communication Engineering Technology, Springer, Switzerland, 2015.

30. Shaker, J., M. R. Chaharmir, and J. Ethier, Reflectarray Antennas: Analysis, Design Fabrication and Measurement, Artech House, 2013.

31. Chaharmir, M. R., J. Shaker, M. Cuhaci, and A. Ittipiboon, "A broadband reflectarray antenna with double square rings," Microw. Opt. Technol. Lett., Vol. 48, No. 7, 1317-1319, Jul. 2006.
doi:10.1002/mop.21630

32. Ryan, C. G. M., M. R. Chaharmir, J. Shaker, J. R. Bray, Y. M. M. Antar, and A. Ittipiboon, "A wideband transmitarray using dual-resonant double square rings," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1486-1493, May 2010.
doi:10.1109/TAP.2010.2044356

33. Abdelrahman, H., A. Z. Elsherbeni, and F. Yang, "Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 690-697, Feb. 2014.
doi:10.1109/TAP.2013.2289313

34. Abdelrahman, H., A. Z. Elsherbeni, and F. Yang, "Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 690-697, Feb. 2014.
doi:10.1109/TAP.2013.2289313

35. Nematollahi, H. and J. J. Laurin, "Reconfigurable reflector antenna based on transmit-array feeding system with a study on the phase discretization of the transmit-array," Proc. 30th Int. Commun. Satell. Syst. Conf., 1-7, Ottawa, Canada, Sept. 2012.

36. CST Microwave Studio, , , [Online], Available: http://www.cst.com.

37. Tian, C., Y. Jiao, G. Zhao, and H. Wang, "A wideband transmitarray using triple-layer elements combined with cross slots and double square rings," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1561-1564, 2017.
doi:10.1109/LAWP.2017.2651027

38. Zhu, H., L. Guo, and W. Feng, "A transmitarray antenna employing double square ring slot unit cells without dielectric substrate," 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-2, Qingdao, China, 2019.

39. Muhammad, M., et al., "Wideband multi-layer frequency selective surface based transmitarray unit cell for satellite communication applications," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, Xi'an, China, 2019.

40. Plaza, E. G., G. Leon, S. Loredo, and F. Lan-Heras, "A simple model for analyzing transmitarray lenses," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 131-144, Apr. 2015.
doi:10.1109/MAP.2015.2414641

41. Khalizadeh, M. and M. M. Mirsalehi, "Design of a microwave dual-band filter using frequency selective surfaces," 20th Iranian Conference on Electrical Engineering, 2012.

42. Lee, K. and R. J. Langley, "Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence," IEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 132, No. 6, 395-399, Oct. 1985.
doi:10.1049/ip-h-2.1985.0070

43. Langley, R. J. and E. A. Parker, "Double-square frequency-selective surfaces and their equivalent circuit," Electronics Letters, Vol. 19, No. 17, 675-677, Aug. 18, 1983.
doi:10.1049/el:19830460