1. Pendry, J. B., A. J. Robbins, D. J. Stewart, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
3. Zhang, J., H. Chen, L. Ran, Y. Luo, and J. A. Kong, "Two-dimensional cross embedded metamaterials," PIERS Online, Vol. 3, No. 3, 241-245, 2007.
doi:10.2529/PIERS061126211441
4. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301
5. Chen, H., L.-X. Ran, J. T. Huang-Fu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
doi:10.2528/PIER04051201
6. Zheludev, N. I., "The road ahead for metamaterials," Science, Vol. 328, 582-583, 2010.
doi:10.1126/science.1186756
7. Lee, J.-G. and J.-H. Lee, "Suppression of spurious radiations of patch antennas using split-ring resonators (SRRs)," Microw. Opt. Technol. Lett., Vol. 48, 283-–287, 2006.
doi:10.1002/mop.21328
8. Panda, P. K. and D. Ghosh, "Isolation, and gain enhancement of patch antennas using EMNZ superstrate," Int. Journal of Electronics and Communications, Vol. 86, 164-170, 2018.
doi:10.1016/j.aeue.2018.01.037
9. Anila, P. V., V. P. Sarin, M. Manoj, M. Remsha, and P. Mohanan, "Broadband non-resonant split ring resonator-based artificial high dielectric substrate," Int. Journal of Electronics and Communications, Vol. 117, 153095, 2020.
doi:10.1016/j.aeue.2020.153095
10. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett., Vol. 99, 147401, 2007.
doi:10.1103/PhysRevLett.99.147401
11. Al-Naib, I. A. I., C. Jansen, and M. Koch, "Thin-film sensing with planar asymmetric metamaterial resonators," App. Phys. Lett., Vol. 93, 083507, 2008.
doi:10.1063/1.2976636
12. Al-Naib, I. A. I., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonators," Appl. Phys. Lett., Vol. 94, 153505, 2009.
doi:10.1063/1.3122147
13. Al-Naib, I., R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, et al. "Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials," Appl. Phys. Lett., Vol. 101, 071108, 2012.
doi:10.1063/1.4745790
14. Li, Y., Z. Zhao, Z. Tang, and Y. Yin, "A low-profile, dual-band filtering antenna with high selectivity for 5G sub-6GHz applications," Microw. Opt. Technol. Lett., Vol. 61, 2282-2287, 2019.
doi:10.1002/mop.31891
15. Selvaraju, R., M. H. Jamaluddin, M. R. Kamarudin, J. Nasir, and M. H. Dahri, "Complementary split ring resonator for isolation enhancement in 5G communication antenna array," Progress In Electromagnetics Research C, Vol. 83, 217-228, 2018.
doi:10.2528/PIERC18011019
16. Abdelgwad, A. H. and M. Ali, "Capacity and efficiency improvement of MIMO antenna systems for 5G handheld terminals," Progress In Electromagnetics Research C, Vol. 104, 269-283, 2020.
17. Huang, M., Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, "Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle," Optics Communications, Vol. 415, 194-201, 2018.
doi:10.1016/j.optcom.2018.01.051
18. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Optical Materials, Vol. 88, 674-679, 2019.
doi:10.1016/j.optmat.2019.01.002
19. Li, W. and Y. Cheng, "Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure," Optics Communications, Vol. 462, 125265, 2020.
doi:10.1016/j.optcom.2020.125265
20. Cheng, Y., J. Fan, H. Luo, and F. Chen, "Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial," IEEE Access, Vol. 8, 7615-7621, 2020.
doi:10.1109/ACCESS.2019.2962299
21. Fan, J. and Y. Cheng, "Broadband high-efficiency cross-polarization conversion and multifunctional wavefront manipulation based on chiral structure metasurface for terahertz wave," J. of Physics D: Applied Physics, Vol. 53, No. 2, 2020.
doi:10.1088/1361-6463/ab4d76
22. Cheng, Y., H. Luo, and F. Chen, "Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures," J. Appl. Phys., Vol. 127, 214902, 2020.
doi:10.1063/5.0002931
23. Chen, F., Y. Cheng, and H. Luo, "A broadband tunable terahertz metamaterial absorber based on single-layer complementary Gammadion-shaped graphene," Materials, Vol. 13, 860, 2020.
doi:10.3390/ma13040860
24. Cheng, Y., F. Chen, and H. Luo, "Triple-band perfect light absorber based on hybrid metasurface for sensing application," Nanoscale Res. Lett., Vol. 15, 103, 2020.
doi:10.1186/s11671-020-03332-x
25. Cheng, Y., H. Zhao, and C. Li, "Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene," Optical Materials, Vol. 109, 110369, 2020.
doi:10.1016/j.optmat.2020.110369
26. Wang, Q. and Y. Cheng, "Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors," AEU --- International Journal of Electronics and Communications, Vol. 120, 153198, 2020.
doi:10.1016/j.aeue.2020.153198
27. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," Proceed. of 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON), 1-4, Chiang Mai, 2016.
28. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU --- International Journal of Electronics and Communications, Vol. 111, 152913, 2019.
doi:10.1016/j.aeue.2019.152913
29. Keshavarz, R., M. Danaeian, M. Movahhedi, and A. Hakimi, "A compact dual-band branch-line coupler based on the interdigital transmission line," Proceed. of 19th Iranian Conference on Electrical Engineering, Tehran, 2011.
30. Keshavarz, R., Y. Miyanaga, M. Yamamoto, T. Hikage, and N. Shariati, "Metamaterial-inspired quad-band notch filter for LTE band receivers and WPT applications," Proceed. of 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-4, Rome, Italy, 2020.
31. Keshavarz, R., A. Mohammadi, and A. Abdipour, "A quad-band distributed amplifier with E-CRLH transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4188-4194, 2013.
doi:10.1109/TMTT.2013.2288939
32. Kulkarni, J., "Multi-band printed monopole antenna conforming bandwidth requirement of GSM/WLAN/WiMAX standards," Progress In Electromagnetics Research Letters, Vol. 91, 59-66, 2020.
doi:10.2528/PIERL20032104
33. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New Journal of Physics, Vol. 7, 168, 2005.
doi:10.1088/1367-2630/7/1/168
34. Daw, A. F., P. A. Fawzey, and M. N. Adly, "Quad-band resonator depends on CRLH/D-CRLH structures," Microwaves & RF, October 2019.
35. Xie, Q., G. Dong, B. Wang, et al. "High-Q Fano resonance in terahertz frequency based on an asymmetric metamaterial resonator," Nanoscale Res. Lett., Vol. 13, 294, 2018.
doi:10.1186/s11671-018-2677-0