1. Zhu, X., J. Gao, B. Zhu, J. Wang, Y. Tang, H. Yu, and S. Wang, "A low-RCS, wideband and circularly polarized metasurface antenna," 2018 IEEE MTT-S International Wireless Symposium (IWS), 1-3, IEEE, May 2018.
2. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 326-331, 2015.
doi:10.1109/TAP.2015.2497352
3. Knott, E. F., Radar Cross Section Measurements, Springer Science & Business Media, 2012.
4. Singh, H. and R. M. Jha, Active Radar Cross-section Reduction, Cambridge University Press, 2015.
doi:10.1017/CBO9781316136171
5. Zhao, S.-C., B.-Z. Wang, and Q.-Q. He, "Broadband radar cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
doi:10.2528/PIER07101002
6. Alibakhshi-Kenari, M., B. S. Virdee, L. Azpilicueta, M. Naser-Moghadasi, M. O. Akinsolu, C. H. See, and T. A. Denidni, "A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698
7. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, N. O. Parchin, L. Azpilicueta, C. H. See, and E. Limiti, "Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672
8. Alibakhshi-Kenari, M., "Design and modeling of new UWB metamaterial planar cavity antennas with shrinking of the physical size for modern transceivers," International Journal of Antennas and Propagation, 2013.
9. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "A novel 0.3–0.31 THz GaAs-based transceiver with on-chip slotted metamaterial antenna based on SIW technology," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 69-71, IEEE, Dec. 2019.
doi:10.1109/APMC46564.2019.9038371
10. Alibakhshi-Kenari, M., M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, and E. Limiti, "Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas," IEEE Access, Vol. 7, 51827-51840, 2019.
doi:10.1109/ACCESS.2019.2909950
11. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," AEU --- International Journal of Electronics and Communications, Vol. 70, No. 12, 1645-1650, 2016.
doi:10.1016/j.aeue.2016.10.003
12. Alibakhshi-Kenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 8, 1143-1149, 2015.
doi:10.1016/j.aeue.2015.04.017
13. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with ±30◦ frequency beam-scanning capability at millimetre-waves," Electronics, Vol. 8, No. 6, 642, 2019.
doi:10.3390/electronics8060642
14. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross-section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1275-1278, Nov. 2009.
15. Pazokian, M., N. Komjani, and M. Karimipour, "Broadband RCS reduction of microstrip antenna using coding frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 1382-1385, Aug. 2018.
doi:10.1109/LAWP.2018.2846613
16. Jang, H. K., W. J. Lee, and C. G. Kim, "Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band," Smart Materials and Structures, Vol. 20, No. 1, 7-15, Dec. 2010.
17. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, Mar. 2012.
doi:10.1109/TAP.2012.2189701
18. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904
19. Liu, Z., Y. Liu, and S. Gong, "Gain enhanced circularly polarized antenna with RCS reduction based on metasurface," IEEE Access, Vol. 6, 46856-46862, 2018.
doi:10.1109/ACCESS.2018.2865533
20. Tan, Y., N. Yuan, Y. Yang, and Y. Fu, "Improved RCS and efficient waveguide slot antenna," Electron. Lett., Vol. 47, No. 10, 582-583, May 2011.
doi:10.1049/el.2011.0842
21. Ravi, P. R., V. A. Libimol, K. K. Sreelatha, T. A. Nisamol, and C. K. Aanandan, "Low RCS microstrip patch antenna using complementary split-ring resonators," IJIRSET, Vol. 7, No. 6, 40-47, Mar. 2017.
22. Kong, X., J. Xu, J. J. Mo, and S. Liu, "Broadband and conformal metamaterial absorber," Frontiers of Optoelectronics, Vol. 10, No. 2, 124-131, Apr. 2017.
doi:10.1007/s12200-017-0682-z
23. Jia, Y., Y. Liu, S.-X. Gong, T. Hong, and D. Yu, "Printed UWB end-fire Vivaldi antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 37, 11-20, 2013.
doi:10.2528/PIERL12112011
24. Yao, P., B. Zhang, and J. Duan, "A broadband artificial magnetic conductor reflecting screen and application in microstrip antenna for radar cross-section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 405-409, Mar. 2018.
doi:10.1109/LAWP.2018.2791662
25. Shater, A. and D. Zarifi, "Radar cross section reduction of microstrip antenna using dual-band metamaterial absorber," Applied Computational Electromagnetics Society Journal, Vol. 32, No. 2, 135-140, Feb. 2017.
26. Zhao, Y., X. Cao, J. Gao, X. Yao, T. Liu, W. Li, and S. Li, "Broadband low-RCS meta surface and its application on the antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2954-2962, Jul. 2016.
doi:10.1109/TAP.2016.2562665
27. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "The novel design of ultra-broadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, Oct. 2017.
doi:10.1109/TAP.2017.2734069
28. Tan, Y., J. Wang, Y. Li, J. Zhang, Y. Han, and S. Qu, "Low-RCS and high-gain circularly polarized metasurface antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7197-7203, 2019.
doi:10.1109/TAP.2019.2920355
29. Nguyen-Trong, N., H. H. Tran, T. K. Nguyen, and A. M. Abbosh, "A compact wideband circular polarized Fabry-Perot antenna using resonance structure of thin dielectric slabs," IEEE Access, Vol. 6, 56333-56339, 2018.
doi:10.1109/ACCESS.2018.2872571
30. Liu, Y., H. Wang, Y. Jia, and S.-X. Gong, "Broadband radar cross-section reduction for microstrip patch antenna based on hybrid AMC structures," Progress In Electromagnetics Research C, Vol. 50, 21-28, 2014.
31. Jang, H. K., W. J. Lee, and C. G. Kim, "Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band," Smart Mater. Struct., Vol. 20, 1-8, Dec. 2010.
32. Yang, H.-H., X.-Y. Cao, Q.-R. Zheng, J.-J. Ma, and W.-Q. Li, "Broadband RCS reduction of microstrip patch antenna using bandstop frequency selective surface," Radio Engineering, Vol. 22, No. 4, 1275-1280, Dec. 2013.
33. Turpin, J. P., P. E. Sieber, and D. H. Werner, "Absorbing ground planes for reducing planar antenna radar cross-section based on frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1456-1459, Nov. 2013.