1. Siah, E. S., K. Sertel, J. L. Volakis, V. V. Liepa, and R. Wiese, "Coupling studies and shielding techniques for electromagnetic penetration through apertures on complex cavities and vehicular platforms," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 245-256, 2003.
doi:10.1109/TEMC.2003.810814
2. Hill, D. A., Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, Wiley-IEEE Press, 2009.
doi:10.1002/9780470495056.app5
3. Tait, G. B., C. E. Hager Iv, T. T. Baseler, and M. B. Slocum, "Ambient power density and electric field from broadband wireless emissions in a reverberant space," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 1, 307-313, 2016.
doi:10.1109/TEMC.2015.2503925
4. Gros, J. B., O. Legrand, F. Mortessagne, E. Richalot, and K. Selemani, "Universal behaviour of a wave chaos based electromagnetic reverberation chamber," Wave Motion, Vol. 51, No. 4, 664-672, 2014.
doi:10.1016/j.wavemoti.2013.09.006
5. Romero, S. F., G. Gutierrez, and I. Gonzalez, "Universal behaviour of a wave chaos based electromagnetic reverberation chamber," Prediction of the Maximum Electric Field Level Inside a Metallic Cavity Using a Quality Factor Estimation, Vol. 28, No. 12, 1468-1477, 2014.
6. Gradoni, G., D. Micheli, F. Moglie, and V. Mariani Primiani, "Absorbing cross section in reverberation chamber: Experimental and numerical results," Progress In Electromagnetics Research B, Vol. 45, 187-202, 2012.
doi:10.2528/PIERB12090801
7. Gifuni, A., H. Khenouchi, and G. Schirinzi, "Performance of the reflectivity measurement in a reverberation chamber," Progress In Electromagnetics Research, Vol. 154, 87-100, 2015.
doi:10.2528/PIER15072903
8. Yu, S. P. and C. F. Bunting, "Statistical investigation of frequency-stirred reverberation chambers," 2003 IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 03CH37446), Vol. 1, 155-159, 2003.
9. Zhou, Z., P. Hu, X. Zhou, J. Ji, and Q. Zhou, "Performance evaluation of oscillating wall stirrer in reverberation chamber using correlation matrix method and modes within Q-bandwidth," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 6, 2669-2678, 2020, doi: 10.1109/TEMC.2020.2983981.
doi:10.1109/TEMC.2020.2983981
10. West, J. C., J. N. Dixon, N. Nourshamsi, D. K. Das, and C. F. Bunting, "Best practices in measuring the quality factor of a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 3, 564-571, 2018.
doi:10.1109/TEMC.2017.2753724
11. Ji, J., X. Zhou, and P. Hu, "Frequency-dependent oscillating wall stirrer for measurement of quality factor in a reverberation chamber," 2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE), 142-145, 2019.
doi:10.1109/ICCCE48422.2019.9010772
12. West, J. C., V. Rajamani, and C. F. Bunting, "Frequency- and time-domain measurement of reverberation chamber Q: An in-silico analysis," 2016 IEEE International Symposium on Electromagnetic Compatibility, 7-12, 2016.
doi:10.1109/ISEMC.2016.7571566
13. Hill, D. A., M. T. Ma, A. R. Ondrejka, B. F. Riddle, M. L. Crawford, and R. T. Johnk, "Aperture excitation of electrically large, lossy cavities," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 3, 169-178, 1994.
doi:10.1109/15.305461
14. Arnaut, L. R., "Measurement uncertainty in reverberation chambers,", Report TEQ 2, Ed, 2.0, National Physical Laboratory (UK), 2008.
15. IEC 61000-4-21 "Electromagnetic compatibility (EMC) - Part 4-21: Testing and measurement techniques - Reverberation chamber test methods,", International Electromagnetic Commission (IEC), 2011.