Vol. 98
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-21
Optically-Switched Antenna with Parallel Photodiodes
By
Progress In Electromagnetics Research M, Vol. 98, 205-212, 2020
Abstract
A novel optically-switched antenna is proposed, in which a photodiode is embedded into an antenna radiator. In order to avoid the high loss problem in series structures for the integration of photodiodes and patch antenna, a photodiode parallel structure with sensitive radio frequency response is selected for the design. The status of the antenna while at work can be effectively adjusted by illumination. Its reflection coefficient and radiation gain vary with the exposure of photodiode to light illumination and non-illumination state. The simulation and experiment of this design at 1.52 GHz produce an obvious effect on light control with a maximum 6.6 dB gain variation on omnidirectional pattern. It is thus deemed suitable for speed measurement and occlusion detection in remote wireless sensor networks and other applications.
Citation
Peiying Lin, and Jiangtao Huangfu, "Optically-Switched Antenna with Parallel Photodiodes," Progress In Electromagnetics Research M, Vol. 98, 205-212, 2020.
doi:10.2528/PIERM20090503
References

1. Chaimool, S., T. Hongnara, C. Rakluea, P. Akkaraekthalin, and Y. Zhao, "Design of a PIN diode-based reconfigurable metasurface antenna for beam switching applications," International Journal of Antennas & Propagation, Vol. 2019, 1-7, Article ID 7216324, 2019.
doi:10.1155/2019/7216324

2. Chauhan, E. S., S. Khandka, and A. Kumar, "Design of frequency reconfigurable annular microstrip patch antenna using PIN diode," Recent Advances on Engineering, Technology and Computational Sciences (RAETCS), 1-4, Allahabad, 2018.

3. Sato, S., S. Saito, and Y. Kimura, "A frequency-tunable dual-band multi-ring microstrip antenna fed by an L-probe with varactor diodes," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1363-1364, San Diego, CA, 2017.

4. Yashchyshyn, Y., K. Derzakowski, G. Bogdan, K. Godziszewski, D. Nyzovets, C. H. Kim, and B. Park, "28 GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 225-228, Feb. 2018.
doi:10.1109/LAWP.2017.2781262

5. Lv, H., Q. Huang, J. Liu, J. Hou, and X. Shi, "Holographic design of beam-switchable leaky-wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2736-2740, Dec. 2019.
doi:10.1109/LAWP.2019.2950382

6. Nguyen, V. A., R. S. Aziz, S. O. Park, and G. Yoon, "A design of multiband, dual-polarization, beam-switchable dual-antenna for indoor base stations," Progress In Electromagnetics Research, Vol. 149, 147-160, 2014.
doi:10.2528/PIER14073103

7. Lin, G., Y. Cui, and R. Li, "A high-gain quad-polarization reconfigurable antenna," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2057-2058, Atlanta, GA, USA, 2019.

8. Tripathi, S., N. P. Pathak, and M. Parida, "A dual feed pin diode based switchable multiband planar meandered antenna for intelligent transportation system application," International Journal of RF & Microwave Computer Aided Engineering, Vol. 29, No. 11, 1-11, Nov. 2019.

9. Nishamol, M. S., V. P. Sarin, D. Tony, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "An electronically reconfigurable microstrip antenna with switchable slots for polarization diversity," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3424-3427, Sept. 2011.
doi:10.1109/TAP.2011.2161446

10. Bhattacharya, A. and R. Jyoti, "Frequency reconfigurable patch antenna using PIN diode at X-band," 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), 81-86, Kolkata, India, 2015.

11. Zahran, A. E. and M. A. Abdalla, "Compact single/multi bands frequency reconfigurable antenna using PIN diode controlled meta-surface," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 745-746, San Diego, CA, USA, 2017.

12. Ikeda, T., S. Saito, and Y. Kimura, "A frequency-tunable dual-band single-layer shorted multi-ring microstrip antenna fed by an L-probe with varactor diodes," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 905-906, Atlanta, GA, USA, 2019.

13. Shirazi, M., J. Huang, T. Li, and X. Gong, "A switchable-frequency slot-ring antenna element for designing a reconfigurable array," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 229-233, Feb. 2018.
doi:10.1109/LAWP.2017.2781463

14. Fang, C. Y., H. H. Lin, M. Alouini, Y. Fainman, and A. E. Amili, "Microwave signal switching on a silicon photonic chip," Scientific Reports, Vol. 9, No. 1, 1-7, Aug. 2019.
doi:10.1038/s41598-018-37186-2

15. Ghaffari, V., I. Aryanian, and L. Yousefi, "Sinusoidally modulated hybrid plasmonic leaky wave optical antenna," 2018 Fifth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), 70-73, Tehran, Iran, 2018.
doi:10.1109/MMWaTT.2018.8661230

16. Natali, Y., P. S. Priambodo, and E. T. Rahardjo, "Radio frequency to lightwave signal using integrated antenna and optical material for electro optic alteration," 2018 4th International Conference on Science and Technology (ICST), 1-5, Yogyakarta, 2018.

17. Tawk, Y., A. R. Albrecht, S. Hemmady, G. Balakrishnan, and C. G. Christodoulou, "Optically pumped frequency reconfigurable antenna design," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 280-283, Apr. 2010.
doi:10.1109/LAWP.2010.2047373

18. Gamlath, C. D., D. M. Benton, and M. J. Cryan, "Investigation of an optically reconfigurable plasma for silicon based microwave applications," European Microwave Conference (EUMC), 874-877, Nuremberg, Germany, Oct. 2013.

19. Arai, H., "High gain optical beam scanning antenna and its measurement," 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 1-3, Melacca, Malaysia, 2019.

20. Jin, G., L. Li, and W. Wang, "A wideband polarization reconfigurable antenna based on optical switches and C-shaped radiator," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Guangzhou, China, 2019.

21. Kusumawati, E. R., Y. H. Pramono, and A. Rubiyanto, "Design and fabrication of tunable microstrip antenna using photodiode as optical switching controlled by Infrared," IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), 55-58, Yogyakarta, Indonesia, 2013.

22. Zhang, Y., S. Lin, S. Yu, G. J. Liu, and A. Denisov, "Design and analysis of optically controlled pattern reconfigurable planar Yagi-Uda antenna," IET Microwaves, Antennas & Propagation, Vol. 12, No. 13, 2053-2059, Oct. 2018.
doi:10.1049/iet-map.2018.5204

23. Abdul Latip, M. A., N. Ab Wahab, M. K. Mohd Salleh, Z. Awang, and M. K. Hamzah, "Frequency-tuned microwave ring resonator using varactor diodes," International Conference on Electronic Devices, Systems and Applications (ICEDSA), 195-198, Kuala Lumpur, Malaysia, 2011.