Vol. 93
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-12
RF Sensor for Food Adulteration Detection
By
Progress In Electromagnetics Research Letters, Vol. 93, 137-142, 2020
Abstract
Microwave testing is an area of research where material characterization is done using interrogating microwaves over a frequency band, and this technique can provide excellent diagnostic engineering, geophysical prospecting. Every material has a unique set of electrical characteristics that are dependent on its dielectric properties. Accurate measurements of these properties can provide valuable information about the material. This work presents a non-destructive technique for the detection of adulterants in food using the proposed RF sensor. The proposed RF sensor is operational at C-band with its resonant frequency at 5.7 GHz. The structure is designed using Ansys HFSS, and a predicted model of the proposed sensor is developed and fabricated. Some common food samples are tested using the fabricated sensor, and a shift in resonant frequency is obtained, which indicates the rate of adulteration. From the obtained results, a general conclusion is obtained on the dependency of the rate of adulteration and permittivity of the food sample. A precise correlation of permittivity of common food samples and its resonant frequency is obtained. The predicted model and the experimental results harmonize, which indicates that the model is proficient in real time testing.
Citation
K. I. Ajay Menon, Pranav S, Sachin Govind, and Yadhukrishna Madhu, "RF Sensor for Food Adulteration Detection," Progress In Electromagnetics Research Letters, Vol. 93, 137-142, 2020.
doi:10.2528/PIERL20090103
References

1. Banerjee, D., S. Chowdhary, S. Chakraborty, and R. Bhattacharyya, "Recent advances in detection of food adulteration," Food Safety in the 21st Century, 145-160, Elsevier, 2017.

2. Muhammed Shafi, K. T., A. K. Jha, and M. Jaleel Akhtar, "Nondestructive technique for detection of adulteration in edible oils using planar RF sensor," 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC), 1-4, IEEE, 2016.

3. Lin, B. and S. Wang, "Dielectric properties, heating rate, and heating uniformity of wheat our with added bran associated with radio frequency treatments," Innovative Food Science & Emerging Technologies, Vol. 60, 102290, 2020.
doi:10.1016/j.ifset.2020.102290

4. Al-Mamun, M., T. Chowdhury, B. Biswas, and N. Absar, "Food poisoning and intoxication: A global leading concern for human health," Food Safety and Preservation, 307-352, Elsevier, 2018.

5. Posudin, Y., K. Peiris, and S. Kays, "Non-destructive detection of food adulteration to guarantee human health and safety," Ukrainian Food J., Vol. 4, No. 2, 207-260, 2015.

6. Sebastian, M. T., Dielectric Materials for Wireless Communication, Elsevier, 2010.