Vol. 95
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-12-27
Design of Independently Tunable Dual-Band Filter with High Selectivity and Compact Size Using Multipath Propagation Concept
By
Progress In Electromagnetics Research Letters, Vol. 95, 107-114, 2021
Abstract
A novel tunable dual-band bandpass filter (DBPF) with high selectivity and independently tunable passbands is proposed in this paper. Electric and magnetic coupling is employed in this design to create transmission zeros. The proposed tunable DBPF has the advantage of fully independent and controllable passbands due to the multipath propagation mechanism. The measured results of tunable DBPF show that the center frequency of the first passband can be shifted from 2.34 to 2.45 GHz when the bias voltage VL increases from 3 V to 15 V, and the second passband can be tuned from 4.73 to 5.04 GHz when the bias voltage VH varies from 6 V to 15 V. Moreover, the core circuit-size of the tunable DBPF is about 0.293 λg x 0.067 λg, where λg is the guided wavelength at 2.4 GHz. The proposed filter exhibits the merits of fully independent and tunable passbands, high selectivity, and compact size.
Citation
Yue-Peng Zhong, Yang Xiong, and Jian Huang, "Design of Independently Tunable Dual-Band Filter with High Selectivity and Compact Size Using Multipath Propagation Concept," Progress In Electromagnetics Research Letters, Vol. 95, 107-114, 2021.
doi:10.2528/PIERL20083102
References

1. Zheng, A. Y., D. Psychogiou, and D. Peroulis, "Design and optimization of tunable silicon-integrated evanescent-mode bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1104-1113, 2018.

2. Arabi, E., F. A. Ghaffar, and A. Shamim, "Tunable bandpass filter based on partially magnetized ferrite LTCC with embedded windings for SoP applications," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 1, 16-18, 2015.
doi:10.1109/LMWC.2014.2365748

3. Chaudhary, G. and H. Choi, "Design of dual-band bandpass filter using DGS with controllable second passband," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 11, 589-591, 2011.
doi:10.1109/LMWC.2011.2167140

4. Zhou, L. H., Y. M. Lin, and J. Shi, "Differential dual-band bandpass filter with tunable lower band using embedded DGS unit for common-mode suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 32-34, 2016.
doi:10.1109/TMTT.2016.2607176

5. Chaudhary, G., Y. Jeong, and J. Lim, "Harmonic suppressed dual-band bandpass filters with tunable passbands," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 7, 2115-2123, 2012.
doi:10.1109/TMTT.2012.2197020

6. Liu, H. W., P. Wen, S. S. Zhu, and B. P. Ren, "Independently controllable dual-band microstrip bandpass filter using quadruple-mode," International Journal of RF and Microwave Computeraided Engineering, Vol. 26, No. 7, 602-608, 2016.
doi:10.1002/mmce.21008

7. Liang, F., X. Zhai, W. Lu, Q. Wang, and Y. Zhang, "An independently tunable dual-band filter using asymmetric λ/4 resonator pairs with shared via-hole ground," Progress In Electromagnetics Research, Vol. 146, 99-108, 2014.
doi:10.2528/PIER14032505

8. Feng, W. J., Y. Zhang, and W. Q. Che, "Tunable dual-band filter and diplexer based on folded open loop ring resonators," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 64, No. 9, 1047-1051, 2017.
doi:10.1109/TCSII.2016.2634555

9. Chen, F. C., R. S. Li, and J. P. Chen, "A tunable dual-band bandpass-to-bandstop filter using p-i-n diodes and varactors," IEEE Access, Vol. 6, 46058-46065, 2018.
doi:10.1109/ACCESS.2018.2862887

10. Fan, Z., Y. Wang, Y. Yu, Y. Gao, Y. Zhang, Y. X. Peng, C. Guo, and J. Xu, "Compact tunable dual-band bandpass filter with independently tunable passbands and high selectivity," IEICE Electronics Express Letter, Vol. 16, No. 11, 1-4, 2019.