Vol. 97
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-16
Wideband Low-Profile SIW Cavity-Backed Bilateral Slots Antenna for X-Band Application
By
Progress In Electromagnetics Research M, Vol. 97, 157-166, 2020
Abstract
In this article, a new approach has been demonstrated for the bandwidth enlargement of a substrate integrated waveguide (SIW) cavity-backed antenna. The proposed structure employs bilateral slots, instead of unilateral slots, which is a distinct approach, in contrast to traditional cavity antennas. The proposed antenna embodies SIW cavity with a height less than 0.017λ0 and thus holds low-profile planar geometry, while retaining lower losses and light weight. The non-resonant slot, at the bottom plate, produces two-hybrid modes (odd TE210 and even TE210). The quality factor (Q) of these hybrid modes is greatly reduced by loading the resonant slot cut at the top metallic plate of the SIW cavity which leads to achieving a wideband response. A sample is fabricated and investigated at X-band. It is shown that the experimental results are well-matched with the simulated ones. The measured impedance bandwidth of the proposed antenna is 860 MHz (8.6%). Moreover, it renders a maximum gain of 6.56 dBi at 9.78 GHz and 6.75 dBi at 10.35 GHz, within the operating bandwidth. The cross-polarization radiation levels of maximum -26 dB and -28 dB are obtained at the corresponding resonant frequencies, respectively.
Citation
Bollavathi Lokeshwar, Dorai Venkatasekhar, and Alapati Sudhakar, "Wideband Low-Profile SIW Cavity-Backed Bilateral Slots Antenna for X-Band Application," Progress In Electromagnetics Research M, Vol. 97, 157-166, 2020.
doi:10.2528/PIERM20083004
References

1. Lee, Y. C. and J. S. Sun, "Compact printed slot antennas for wireless dual-and multi-band operations," Progress In Electromagnetics Research, Vol. 88, 289-305, 2008.
doi:10.2528/PIER08111902

2. Zhou, S. G., G. L. Huang, and T. H. Chio, "A low-profile wideband cavity-backed bowtie antenna," Microw. Opt. Techno. Lett., Vol. 55, No. 6, 1422-1426, 2013.
doi:10.1002/mop.27573

3. Deslandes, D. and K. Wu, "Accurate modeling wave mechanisms and design considerations of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2516-2526, 2006.
doi:10.1109/TMTT.2006.875807

4. Luo, G. Q., T. Y. Wang, and X. H. Zhang, "Review of low profile substrate integrated waveguide cavity backed antennas," Int. J. Antennas Propag., 746920, 2013.

5. Luo, G. Q., Z. F. Hu, L. X. Dong, and L. L. Sun, "Planar slot antenna backed by substrate integrated waveguide cavity," IEEE Antennas Wirel. Propag. Lett., Vol. 7, No. 8, 236-239, Aug. 2008.

6. Luo, G. Q., Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, "Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1698-1704, 2012.
doi:10.1109/TAP.2012.2186226

7. Yun, S., D. Kim, and S. Nam, "Bandwidth and efficiency enhancement of cavity-backed slot antenna using a substrate removal," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1458-1461, 2012.

8. Yun, S., D. Kim, and S. Nam, "Bandwidth enhancement of cavity-backed slot antenna using a via-hole above the slot," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1092-1095, 2012.

9. Yang, W. and J. Zhou, "Wideband low-profile substrate integrated waveguide cavity-backed E-shaped patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 143-146, 2013.
doi:10.1109/LAWP.2013.2241011

10. Mukherjee, S., A. Biswas, and K. V. Srivastava, "Bandwidth enhancement of substrate integrated waveguide cavity backed slot antenna by offset feeding technique," IEEE Applied Electromagnetics Conf. (AEMC), Dec. 2013.

11. Baghernia, E. and M. H. Neshati, "Development of a broadband substrate integrated waveguide cavity backed slot antenna using perturbation technique," Appl. Comput. Electro. Soc. J., Vol. 29, No. 11, 847-855, 2014.

12. Heydarzadeh, F. and M. H. Neshati, "Design and development a wideband SIW based cavity-backed slot antenna using two symmetrical circular corner perturbations," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, No. 9, e21552, 2018.
doi:10.1002/mmce.21552

13. Chaturvedi, D., "SIW cavity-backed 24o inclined-slots antenna for ISM band application," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 5, e22160, 2020.
doi:10.1002/mmce.22160

14. Ali, H. A., E. Massoni, L. Silvestri, M. Bozzi, L. Perregrini, and A. Gharsallah, "Increasing the bandwidth of cavity-backed SIW antennas by using stacked cavities," Int. J. Microw. and Wireless Tech., Vol. 10, No. 8, 942-947, 2018.
doi:10.1017/S1759078718000478

15. Lokeshwar, B., D. Venkatasekhar, and A. Sudhakar, "Dual-band low profile SIW cavity-backed antenna by using bilateral slots," Progress In Electromagnetics Research C, Vol. 100, 263-273, 2020.
doi:10.2528/PIERC20021201