Vol. 94
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-27
An Electrically Small Dual-Band Antenna Covered with SRs and SRR
By
Progress In Electromagnetics Research Letters, Vol. 94, 85-92, 2020
Abstract
A dual-band antenna operating in dual bands is presented. The antenna is composed of two substrate layers covered with three printed patch layers. The top layer is an electrically small ring; the middle consists of four spiral resonators (SRs); and the bottom is a split-ring resonator (SRR). Inductive couplings between layers change the radiation Q factor of the original ring antenna and promote resonating modes in UHF and S bands. Besides, the input matching property is also improved. The measured return loss agrees well with the calculated results, and the radiation patterns are also presented. From experiments it is found that the proposed antenna is electrically small at operation dual-bands.
Citation
Ke Xiao, Jun Dong, Liang Ding, and Shunlian Chai, "An Electrically Small Dual-Band Antenna Covered with SRs and SRR," Progress In Electromagnetics Research Letters, Vol. 94, 85-92, 2020.
doi:10.2528/PIERL20080703
References

1. Patel, R. H., A. Desai, and T. Upadhyaya, "A discussion on electrically small antenna property," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2386-2388, 2015.
doi:10.1002/mop.29335

2. Peng, L., P. Chen, A. Wu, and G. Wang, "Efficient radiation by electrically small antennas made of coupled split-ring resonators," Scientific Reports, Vol. 6, 33501, 2016.
doi:10.1038/srep33501

3. Wang, L., M. Q. Yuan, and Q. H. Liu, "A dual-band printed electrically small antenna covered by two capacitive split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 824-826, 2011.
doi:10.1109/LAWP.2011.2164890

4. Peng, L., S. Sang, Z. Wang, et al. "Wideband radiation from an offset-fed split ring resonator with multi-order resonances," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2198-2202, 2018.
doi:10.1109/LAWP.2018.2871040

5. Tang, M. C., B. Zhou, Y. Duan, X. Chen, and R. W. Ziolkowski, "Pattern-reconfigurable, flexible, wideband, directive, electrically small near-field resonant parasitic antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2271-2280, 2018.
doi:10.1109/TAP.2018.2814220

6. Sharma, S. K., M. A. Abdalla, and Z. Hu, "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927

7. Rezaeieh, S. A., M. Antoniades, and A. M. Abbosh, "Compact wideband loop antenna partially loaded with Mu-negative metamaterial unit cells for directivity enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1018-1021, 2015.

8. Park, J.-H., Y.-H. Ryu, and J.-H. Lee, "Mu-zero resonance antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 1865-1875, 2010.
doi:10.1109/TAP.2010.2046832

9. Tang, M. C., Z. Wu, T. Shi, and R. W. Ziolkowski, "Electrically small, low-profile, planar, Huygens dipole antenna with quad-polarization diversity," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 6772-6780, 2018.
doi:10.1109/TAP.2018.2869645

10. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902

11. Harrington, R. F., "Effect of antenna size on gain, bandwidth, and efficiency," J. Res. National Bureau of Standards, D. Radio Propag., Vol. 64D, No. 1, 1-12, 1960.
doi:10.6028/jres.064D.003