1. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116
2. Raman, C. V., "Caustics formed by diffraction and the geometric theory of diffraction patterns," Proceedings of the Indian Academy of Sciences — Section A, 307-317, 1959.
doi:10.1007/BF03052839
3. Kathavate, Y. V., "Geometric theory of Fresnel diffraction patterns," Proceedings of the Indian Academy of Sciences — Section A, Vol. 21, 77-87, 1945.
4. Kumar, R., "Structure of boundary diffraction wave revisited," Appl. Phys. B, Vol. 90, 379-382, 2008.
doi:10.1007/s00340-007-2897-y
5. Luebbers, R. J., "Finite conductivity uniform gtd versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. Antennas and Propag., Vol. 32, No. 1, 70-76, 1984.
doi:10.1109/TAP.1984.1143189
6. Schneider, M. and R. J. Luebbers, "A uniform double diffraction coefficient," APS International Symposium, Vol. 3, 1270-1273, 1989.
7. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651
8. Holm, P. D., "UTD-diffraction coefficients for higher order wedge diffracted fields," IEEE Trans. Antennas and Propag., Vol. 44, No. 6, 879-888, 1996.
doi:10.1109/8.509892
9. Tzaras, C. and S. R. Saunders, "An improved heuristic UTD solution for multiple-edge transition zone diffraction," IEEE Trans. Antennas and Propag., Vol. 49, No. 12, 1678-1682, 2001.
doi:10.1109/8.982446
10. Jakobus, U., A. G. Aguilar, G. Woelfle, J. Van Tander, M. Bingle, K. Longtin, and M. Vogel, "Recent advances of FEKO and WinProp," APS URSI Science Meeting, 409-410, 2018.
11. Shick, M., U. Jakobus, M. Schoeman, M. Bingle, J. Van Tandor, W. Burger, and D. Ludick, "Extended solution methods in FEKO to solve actual antenna simulation problems: Accelerated MoM and windscreen antenna modelling," EUCAP, 3053-3055, 2011.
12. Kandimalla, D. and A. De, "High frequency uniform asymptotic solution for diffraction by the edges of a curved plate," IEEE InCAP, 1-4, 2018.
13. Andersen, J. B., "UTD multiple-edge transition zone diffraction," IEEE Trans. Antennas and Propag., Vol. 45, No. 7, 1093-1097, 1997.
doi:10.1109/8.596898
14. Andersen, J. B., "Transition zone diffraction by multiple edges," IPMAP, Vol. 141, No. 5, 382-384, 1994.
15. Rizk, K., R. Valenzuela, D. Chiznik, and F. Gardiol, "Application of the slope diffraction method for urban microwave propagation prediction," IEEE VTC, Vol. 2, 1150-1155, 1998.
16. Kara, A., H. L. Bertoni, and E. Yazgan, "Limit and application range of the slope-diffraction method for wireless communications," IEEE Trans. Antennas and Propag., Vol. 51, No. 9, 2512-2514, 2003.
doi:10.1109/TAP.2003.816389
17. Tabakcioglu, M. B. and A. Kara, "Comparison of improved slope uniform theory of diffraction with some geometrical optic and physical optic methods for multiple building diffractions," Electromagnetics, Vol. 29, No. 4, 303-320, 2009.
doi:10.1080/02726340902876951
18. Tabakcioglu, M. B. and A. Kara, "Improvements on slope diffraction for multiple wedges," Electromagnetics, Vol. 30, No. 3, 285-296, 2010.
doi:10.1080/02726340903577541
19. Tabakcioglu, M. B., "S-UTD-CH model in multiple diffractions," International Journal of Electronics, Vol. 103, No. 5, 765-774, 2016.
20. Tabakcioglu, M. B., "A top-down approach to S-UTD-CH model," ACES Journal, Vol. 32, No. 7, 586-592, 2017.
21. Mcnamara, D. A., C. Pistorius, and J. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artec House, 1990.
22. Chung, H. K. and H. L. Bertoni, "Application of isolated diffraction edge (IDE) method for urban microwave path loss prediction," IEEE VTC, Vol. 1, 205-209, 2003.
23. Tabakcioglu, M. B. and A. Cansiz, "Application of S-UTD-CH model into multiple diffraction scenarios," International Journal of Antennas and Propagation, 1-5, 2013.
doi:10.1155/2013/285304