Vol. 97
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-29
Extensive Comparison Results of Coverage Map of Optimum Base Station Location of Digital Terrain with UTD Based Model
By
Progress In Electromagnetics Research M, Vol. 97, 69-76, 2020
Abstract
In order to provide high quality of service broadcasting systems, predicting the electric field strength in all the receiving points and generating the coverage map of the transmitter are svery important. Uniform Theory of Diffraction (UTD) based ray theoretical models could be used to predict the electric field and generate the coverage map in a short time. In order to eliminate the non-successive obstacles in the scenario and to reduce the computation time of UTD Model, Convex Hull (CH) technique is used for the first time. After this point, this model is named as Uniform Theory of Diffraction with Convex hull (UTD-CH) Model. Moreover, how operating frequency, obstacle height and the distance between the obstacles affect the coverage map of optimum base station location are researched by using UTD based models. In this study, UTD, Slope Uniform Theory of Diffraction (S-UTD), Slope Uniform Theory of Diffraction with Convex Hull (S-UTD-CH), and UTD-CH models are used for comparisons. Furthermore, computation times of UTD based models are compared.
Citation
Mehmet Baris Tabakcioglu, "Extensive Comparison Results of Coverage Map of Optimum Base Station Location of Digital Terrain with UTD Based Model," Progress In Electromagnetics Research M, Vol. 97, 69-76, 2020.
doi:10.2528/PIERM20080405
References

1. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116

2. Raman, C. V., "Caustics formed by diffraction and the geometric theory of diffraction patterns," Proceedings of the Indian Academy of Sciences — Section A, 307-317, 1959.
doi:10.1007/BF03052839

3. Kathavate, Y. V., "Geometric theory of Fresnel diffraction patterns," Proceedings of the Indian Academy of Sciences — Section A, Vol. 21, 77-87, 1945.

4. Kumar, R., "Structure of boundary diffraction wave revisited," Appl. Phys. B, Vol. 90, 379-382, 2008.
doi:10.1007/s00340-007-2897-y

5. Luebbers, R. J., "Finite conductivity uniform gtd versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. Antennas and Propag., Vol. 32, No. 1, 70-76, 1984.
doi:10.1109/TAP.1984.1143189

6. Schneider, M. and R. J. Luebbers, "A uniform double diffraction coefficient," APS International Symposium, Vol. 3, 1270-1273, 1989.

7. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

8. Holm, P. D., "UTD-diffraction coefficients for higher order wedge diffracted fields," IEEE Trans. Antennas and Propag., Vol. 44, No. 6, 879-888, 1996.
doi:10.1109/8.509892

9. Tzaras, C. and S. R. Saunders, "An improved heuristic UTD solution for multiple-edge transition zone diffraction," IEEE Trans. Antennas and Propag., Vol. 49, No. 12, 1678-1682, 2001.
doi:10.1109/8.982446

10. Jakobus, U., A. G. Aguilar, G. Woelfle, J. Van Tander, M. Bingle, K. Longtin, and M. Vogel, "Recent advances of FEKO and WinProp," APS URSI Science Meeting, 409-410, 2018.

11. Shick, M., U. Jakobus, M. Schoeman, M. Bingle, J. Van Tandor, W. Burger, and D. Ludick, "Extended solution methods in FEKO to solve actual antenna simulation problems: Accelerated MoM and windscreen antenna modelling," EUCAP, 3053-3055, 2011.

12. Kandimalla, D. and A. De, "High frequency uniform asymptotic solution for diffraction by the edges of a curved plate," IEEE InCAP, 1-4, 2018.

13. Andersen, J. B., "UTD multiple-edge transition zone diffraction," IEEE Trans. Antennas and Propag., Vol. 45, No. 7, 1093-1097, 1997.
doi:10.1109/8.596898

14. Andersen, J. B., "Transition zone diffraction by multiple edges," IPMAP, Vol. 141, No. 5, 382-384, 1994.

15. Rizk, K., R. Valenzuela, D. Chiznik, and F. Gardiol, "Application of the slope diffraction method for urban microwave propagation prediction," IEEE VTC, Vol. 2, 1150-1155, 1998.

16. Kara, A., H. L. Bertoni, and E. Yazgan, "Limit and application range of the slope-diffraction method for wireless communications," IEEE Trans. Antennas and Propag., Vol. 51, No. 9, 2512-2514, 2003.
doi:10.1109/TAP.2003.816389

17. Tabakcioglu, M. B. and A. Kara, "Comparison of improved slope uniform theory of diffraction with some geometrical optic and physical optic methods for multiple building diffractions," Electromagnetics, Vol. 29, No. 4, 303-320, 2009.
doi:10.1080/02726340902876951

18. Tabakcioglu, M. B. and A. Kara, "Improvements on slope diffraction for multiple wedges," Electromagnetics, Vol. 30, No. 3, 285-296, 2010.
doi:10.1080/02726340903577541

19. Tabakcioglu, M. B., "S-UTD-CH model in multiple diffractions," International Journal of Electronics, Vol. 103, No. 5, 765-774, 2016.

20. Tabakcioglu, M. B., "A top-down approach to S-UTD-CH model," ACES Journal, Vol. 32, No. 7, 586-592, 2017.

21. Mcnamara, D. A., C. Pistorius, and J. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artec House, 1990.

22. Chung, H. K. and H. L. Bertoni, "Application of isolated diffraction edge (IDE) method for urban microwave path loss prediction," IEEE VTC, Vol. 1, 205-209, 2003.

23. Tabakcioglu, M. B. and A. Cansiz, "Application of S-UTD-CH model into multiple diffraction scenarios," International Journal of Antennas and Propagation, 1-5, 2013.
doi:10.1155/2013/285304