Vol. 93
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-09-11
A Novel Dual Band Notched MIMO UWB Antenna
By
Progress In Electromagnetics Research Letters, Vol. 93, 65-71, 2020
Abstract
A novel, miniature multiple input multiple output (MIMO) ultra wide band (UWB) antenna with dual notched characteristics is proposed. The antenna incorporates a tapered microstrip feed line with two radiating patch structures procured by the incorporation of two ellipses with a circle and a reduced ground structure. The proposed antenna is printed on an FR-4 substrate having a concise size of 40 x 22 mm2 to cover -10 dB bandwidth of 3.18-11.26 GHz with fractional bandwidth of 112%. The two notched bands 3.31-3.99 GHz for WiMAX and 4.97-5.93 GHz for WLAN accomplished by two T-shaped parasitic structures are etched above ground plane and inverted U- shaped slots etched on radiating patch, respectively. The isolation of < -15 dB is realized by inserting a T-shaped stub in between two patch elements. The measured MIMO diversity characteristics are the evidence of that the proposed antenna is appropriate for portable wireless applications.
Citation
Venkata Naga Koteswara Rao Devana, and Avula Maheswara Rao, "A Novel Dual Band Notched MIMO UWB Antenna," Progress In Electromagnetics Research Letters, Vol. 93, 65-71, 2020.
doi:10.2528/PIERL20080101
References

1. Bolin, T., A. Derneryd, G. Kristensson, V. Plicanic, and Z. Ying, "Two-antenna receive diversity performance in indoor environment," IEEE Electronics Letters, Vol. 41, No. 22, 1205-1206, Oct. 2005.
doi:10.1049/el:20053365

2. Costa, J. R., E. B. Lima, C. R. Medeiros, and C. A. Fernandes, "Evaluation of a new wideband slot array for MIMO performance enhancement in indoor WLANs," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1200-1206, 2011.
doi:10.1109/TAP.2011.2109685

3. Karimian, R., H. Oraizi, S. Fakhte, and M. Farahani, "Novel F-shaped quad-band printed slot antenna for WLAN and WiMAX MIMO systems," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 405-408, 2013.
doi:10.1109/LAWP.2013.2252140

4. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

5. Zhang, S. and G. F. Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2016.
doi:10.1109/LAWP.2015.2435992

6. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Design and optimization of uniplanar EBG structures for low profile antenna applications and mutual coupling reduction," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4944-4949, 2012.
doi:10.1109/TAP.2012.2210178

7. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-–59, 2010.
doi:10.1109/LAWP.2010.2042565

8. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Computational investigation and design of planar EBG structures for coupling reduction in antenna applications," IEEE Transactions on Magnetics, Vol. 48, No. 2, 771-774, 2012.
doi:10.1109/TMAG.2011.2172680

9. Varzakas, P., "Average channel capacity for rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, 2006.
doi:10.1002/dac.784

10. Zhu, J., B. Feng, B. Peng, S. Li, and L. Deng, "Compact CPW UWB diversity slot antenna with dual band-notched characteristics," Microwave and Optical Technology Letters, Vol. 58, No. 4, 989-994, 2016.
doi:10.1002/mop.29714

11. Gorai, A., A. Dasgupta, and R. Ghatak, "A compact quasi-self-complementary dual band notched UWB MIMO antenna with enhanced isolation using Hilbert fractal slot," International Journal of Electronics and Communications, 2018, doi: https://doi.org/10.1016/j.aeue.2018.06.035.

12. Liu, X. L., Z. D. Wang, Y.-Z. Yin, and J. H. Wang, "Closely spaced dual band-notched UWB antenna for MIMO applications," Progress In Electromagnetics Research C, Vol. 46, 109-116, 2014.
doi:10.2528/PIERC13120402

13. Bhattacharya, A., B. Roy, S. K. Chowdhury, and A. K. Bhattacharjee, "An isolation enhanced, printed, low-profile UWB-MIMO antenna with unique dual band-notching features for WLAN and WiMAX," IETE Journal of Research, 2019, DOI: 10.1080/03772063.2019.1612284.

14. Li, J.-F., D.-L. Wu, and Y.-J. Wu, "Dual band-notched UWB MIMO antenna with uniform rejection performance," Progress In Electromagnetics Research M, Vol. 54, 103-111, 2017.

15. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications," IET Microwaves, Antennas and Propagation, 1-7, 2013.

16. Biswal, S. P. and S. Das, "A low profile dual port UWB-MIMO/diversity antenna with band rejection ability," International Journal of RF and Microwave Computer Aided Engineering, e21159, 2017, https://doi.org/10.1002/mmce.21159.

17. Abdalla, M. A. and A. A. Ibrahim, "Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1452-1455, 2013.
doi:10.1109/LAWP.2013.2288338