Vol. 168
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-10-15
Radiation Gauge Potential-Based Time Domain Integral Equations for Penetrable Regions
By
Progress In Electromagnetics Research, Vol. 168, 73-86, 2020
Abstract
Potential-based integral equations are being explored to develop numerical methods that avoid low frequency breakdown issues and are better suited to couple to quantum physics computations. Important classes of quantum electrodynamics problems are typically formulated in the radiation gauge, leading to interest in efficient numerical solutions able to be performed directly in this gauge. This work presents time domain integral equations for penetrable regions that are developed in the radiation gauge. An appropriate marching-on-in-time discretization scheme is developed that fully conforms to the spatial and temporal Sobolev space properties of the integral equations. It is shown that following this approach leads to a discrete system with improved stability properties that produces accurate results down to very low frequencies. The accuracy and stability of this formulation at low frequencies are shown through numerical results.
Citation
Thomas Edgar Roth, and Weng Cho Chew, "Radiation Gauge Potential-Based Time Domain Integral Equations for Penetrable Regions," Progress In Electromagnetics Research, Vol. 168, 73-86, 2020.
doi:10.2528/PIER20072801
References

1. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics, Wiley Interscience, 1997.
doi:10.1002/9783527618422

2. Walls, D. F. and G. J. Milburn, Quantum Optics, Springer Science & Business Media, 2007.

3. Liu, A. Y. and W. C. Chew, "Dressed atom fields and dressed states in waveguide quantum electrodynamics," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 2, 58-65, 2017.
doi:10.1109/JMMCT.2017.2698341

4. Rodriguez, A. W., A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, "Casimir forces in the time domain: Theory," Physical Review A, Vol. 80, No. 1, 012115, 2009.
doi:10.1103/PhysRevA.80.012115

5. Gregersen, N., P. Kaer, and J.Mørk, "Modeling and design of high-efficiency single-photon sources," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 5, 1-16, 2013.
doi:10.1109/JSTQE.2013.2255265

6. Kandala, A., A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets," Nature, Vol. 549, No. 7671, 242-246, 2017.
doi:10.1038/nature23879

7. Barends, R., J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, et al. "Superconducting quantum circuits at the surface code threshold for fault tolerance," Nature, Vol. 508, No. 7497, 500-503, 2014.
doi:10.1038/nature13171

8. Shanker, B., A. A. Ergin, M. Lu, and E. Michielssen, "Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 628-641, 2003.
doi:10.1109/TAP.2003.809054

9. Yilmaz, A. E., J.-M. Jin, and E. Michielssen, "Time domain adaptive integral method for surface integral equations," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2692-2708, 2004.
doi:10.1109/TAP.2004.834399

10. Chen, N.-W., K. Aygun, and E. Michielssen, "Integral-equation-based analysis of transient scattering and radiation from conducting bodies at very low frequencies," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 148, No. 6, 381-387, 2001.
doi:10.1049/ip-map:20010827

11. Cools, K., F. P. Andriulli, F. Olyslager, and E. Michielssen, "Time domain Calder´on identities and their application to the integral equation analysis of scattering by PEC objects Part I: Preconditioning," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2352-2364, 2009.
doi:10.1109/TAP.2009.2024460

12. Qian, Z.-G. and W. C. Chew, "Fast full-wave surface integral equation solver for multiscale structure modeling," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3594-3601, 2009.
doi:10.1109/TAP.2009.2023629

13. Taskinen, M. and P. Yla-Oijala, "Current and charge integral equation formulation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 58-67, 2006.
doi:10.1109/TAP.2005.861580

14. Liu, Q. S., S. Sun, and W. C. Chew, "A potential based integral equation method for low-frequency electromagnetic problems," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1413-1426, 2018.
doi:10.1109/TAP.2018.2794388

15. Li, J., X. Fu, and B. Shanker, "Decoupled potential integral equations for electromagnetic scattering from dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1729-1739, 2018.
doi:10.1109/TAP.2018.2883636

16. Roth, T. E. and W. C. Chew, "Development of stable A-Φ time domain integral equations for multiscale electromagnetics," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 3, 255-265, 2018.
doi:10.1109/JMMCT.2018.2889535

17. Roth, T. E. and W. C. Chew, "Stability analysis and discretization of A-Φ time domain integral equations for multiscale electromagnetics," Journal of Computational Physics, 109102, 2019.

18. Jackson, J. D., Classical Electrodynamics, Wiley, 1999.

19. Stratton, J. A., Electromagnetic Theory, John Wiley & Sons, 2007.

20. Tai, C.-T., "Direct integration of field equations," Progress In Electromagnetics Research, Vol. 28, 339-359, 2000.
doi:10.2528/PIER99101401

21. Jin, J.-M., Theory and Computation of Electromagnetic Fields, John Wiley & Sons, 2011.

22. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

23. Ha-Duong, T., "On retarded potential boundary integral equations and their discretisation," Topics in Computational Wave Propagation, 301-336, Springer, 2003.
doi:10.1007/978-3-642-55483-4_8

24. Cools, K., F. Andriulli, D. De Zutter, and E. Michielssen, "Accurate and conforming mixed discretization of the MFIE," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 528-531, 2011.
doi:10.1109/LAWP.2011.2155022

25. van’tWout, E., D. R. van der Heul, H. van der Ven, and C. Vuik, "Stability analysis of the marchingon-in-time boundary element method for electromagnetics," Journal of Computational and Applied Mathematics, Vol. 294, 358-371, 2016.
doi:10.1016/j.cam.2015.09.002

26. Bachelot, A., L. Bounhoure, and A. Pujols, "Couplage elements finis-potentiels retardes pour la diffraction electromagnetique par un obstacle heterogene," Numerische Mathematik, Vol. 89, No. 2, 257-306, 2001.
doi:10.1007/PL00005468

27. Roth, T. E. and W. C. Chew, "Potential-based TDIEs for dielectric regions using magnetic currents," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1443-1444, IEEE, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8889161

28. Roth, T. E. and W. C. Chew, "Initial potential-based time domain surface integral equations for dielectric regions," 2019 PhotonIcs & Electromagnetics Research Symposium — Spring (PIERS — Spring), Rome, Italy, June 17–20, 2019.

29. Buffa, A. and S. Christiansen, "A dual finite element complex on the barycentric refinement," Mathematics of Computation, Vol. 76, No. 260, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5

30. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

31. Dai, Q. I., W. C. Chew, L. J. Jiang, and Y. Wu, "Differential-forms-motivated discretizations of electromagnetic differential and integral equations," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1223-1226, 2014.
doi:10.1109/LAWP.2014.2332300

32. Chen, Q. and D. Wilton, "Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies," International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's, 590-593, IEEE, 1990.
doi:10.1109/APS.1990.115179

33. Walker, S., M. Bluck, and I. Chatzis, "The stability of integral equation time-domain scattering computations for three-dimensional scattering; similarities and differences between electrodynamic and elastodynamic computations," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 15, No. 5-6, 459-474, 2002.
doi:10.1002/jnm.473

34. Bamberger, A., T. Ha-Duong, and J. C. Nedelec, "Formulation variationnelle espace-temps pour le calcul par potentiel retard´e de la diffraction d’une onde acoustique (I)," Mathematical Methods in the Applied Sciences, Vol. 8, No. 1, 405-435, 1986.
doi:10.1002/mma.1670080127

35. Terrasse, I., Resolution mathematique et numerique des equations de Maxwell instationnaires par une methode de potentiels retardes, Ph.D. dissertation, 1993.

36. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 316-328, 1997.
doi:10.1109/8.558648

37. Desbrun, M., E. Kanso, and Y. Tong, "Discrete differential forms for computational modeling," Discrete Differential Geometry, 287-324, Springer, 2008.
doi:10.1007/978-3-7643-8621-4_16